scholarly journals Can Cross-Country Genomic Predictions Be a Reasonable Strategy to Support Germplasm Exchange? – A Case Study With Hydrogen Cyanide in Cassava

2021 ◽  
Vol 12 ◽  
Author(s):  
Lívia Gomes Torres ◽  
Eder Jorge de Oliveira ◽  
Alex C. Ogbonna ◽  
Guillaume J. Bauchet ◽  
Lukas A. Mueller ◽  
...  

Genomic prediction (GP) offers great opportunities for accelerated genetic gains by optimizing the breeding pipeline. One of the key factors to be considered is how the training populations (TP) are composed in terms of genetic improvement, kinship/origin, and their impacts on GP. Hydrogen cyanide content (HCN) is a determinant trait to guide cassava’s products usage and processing. This work aimed to achieve the following objectives: (i) evaluate the feasibility of using cross-country (CC) GP between germplasm’s of Embrapa Mandioca e Fruticultura (Embrapa, Brazil) and The International Institute of Tropical Agriculture (IITA, Nigeria) for HCN; (ii) provide an assessment of population structure for the joint dataset; (iii) estimate the genetic parameters based on single nucleotide polymorphisms (SNPs) and a haplotype-approach. Datasets of HCN from Embrapa and IITA breeding programs were analyzed, separately and jointly, with 1,230, 590, and 1,820 clones, respectively. After quality control, ∼14K SNPs were used for GP. The genomic estimated breeding values (GEBVs) were predicted based on SNP effects from analyses with TP composed of the following: (i) Embrapa genotypic and phenotypic data, (ii) IITA genotypic and phenotypic data, and (iii) the joint datasets. Comparisons on GEBVs’ estimation were made considering the hypothetical situation of not having the phenotypic characterization for a set of clones for a certain research institute/country and might need to use the markers’ effects that were trained with data from other research institutes/country’s germplasm to estimate their clones’ GEBV. Fixation index (FST) among the genetic groups identified within the joint dataset ranged from 0.002 to 0.091. The joint dataset provided an improved accuracy (0.8–0.85) compared to the prediction accuracy of either germplasm’s sources individually (0.51–0.67). CC GP proved to have potential use under the present study’s scenario, the correlation between GEBVs predicted with TP from Embrapa and IITA was 0.55 for Embrapa’s germplasm, whereas for IITA’s it was 0.1. This seems to be among the first attempts to evaluate the CC GP in plants. As such, a lot of useful new information was provided on the subject, which can guide new research on this very important and emerging field.

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 76-77
Author(s):  
Seyed Milad Vahedi ◽  
Siavash Salek Ardestani ◽  
Duy Ngoc Do ◽  
Karim Karimi ◽  
Younes Miar

Abstract Body conformation traits such as body height (BH) and body length (BL) have been included in the swine industry’s selection criteria. The objective of this study was to identify the quantitative trait loci (QTLs) and candidate genes for pig conformation traits using an integration of selection signatures analyses and weighted single-step GWAS (WssGWAS). Body measurement records of 5,593 Yorkshire pigs of which 598 animals were genotyped with Illumina 50K panel were used. Estimated breeding values (EBVs) for BH and BL were computed using univariate animal models. Genotyped animals were grouped into top 5% and bottom 5% based on their EBVs, and selection signatures analyses were performed using fixation index (Fst), FLK, hapFLK, and Rsb statistics, which were then combined as a Mahalanobis distance (Md) framework. The WssGWAS was conducted to detect the single nucleotide polymorphisms (SNPs) associated with the studied traits. The top 1% SNPs (n=530) from Md distribution that overlapped with the top 1% SNPs from WssGWAS (n = 530) were used to detect the candidate genes. A total of 31 and six overlapped SNPs were found to be associated with BH and BL, respectively. Several candidate genes were identified for BH (PARVA, DCDC1, SYT1, CASTOR2, RGSL1, RGS8, RBMS3, TGFBR2, and HS6ST1) and BL (SNTB1, AK7, PAPOLA, KSR1, CHODL, and BMP2), explaining 2.58% and 0.42% of the trait’s genetic variation, respectively. Our results indicated that integrating data from the signatures of selection tests with WssGWAS could help elucidate genomic regions underlying complex traits.


2021 ◽  
Author(s):  
Zhilin Yuan ◽  
Irina S. Druzhinina ◽  
John G. Gibbons ◽  
Zhenhui Zhong ◽  
Yves Van de Peer ◽  
...  

AbstractUnderstanding how organisms adapt to extreme living conditions is central to evolutionary biology. Dark septate endophytes (DSEs) constitute an important component of the root mycobiome and they are often able to alleviate host abiotic stresses. Here, we investigated the molecular mechanisms underlying the beneficial association between the DSE Laburnicola rhizohalophila and its host, the native halophyte Suaeda salsa, using population genomics. Based on genome-wide Fst (pairwise fixation index) and Vst analyses, which compared the variance in allele frequencies of single-nucleotide polymorphisms (SNPs) and copy number variants (CNVs), respectively, we found a high level of genetic differentiation between two populations. CNV patterns revealed population-specific expansions and contractions. Interestingly, we identified a ~20 kbp genomic island of high divergence with a strong sign of positive selection. This region contains a melanin-biosynthetic polyketide synthase gene cluster linked to six additional genes likely involved in biosynthesis, membrane trafficking, regulation, and localization of melanin. Differences in growth yield and melanin biosynthesis between the two populations grown under 2% NaCl stress suggested that this genomic island contributes to the observed differences in melanin accumulation. Our findings provide a better understanding of the genetic and evolutionary mechanisms underlying the adaptation to saline conditions of the L. rhizohalophila–S. salsa symbiosis.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 363
Author(s):  
Sulochana K. Wasala ◽  
Dana K. Howe ◽  
Louise-Marie Dandurand ◽  
Inga A. Zasada ◽  
Dee R. Denver

Globodera pallida is among the most significant plant-parasitic nematodes worldwide, causing major damage to potato production. Since it was discovered in Idaho in 2006, eradication efforts have aimed to contain and eradicate G. pallida through phytosanitary action and soil fumigation. In this study, we investigated genome-wide patterns of G. pallida genetic variation across Idaho fields to evaluate whether the infestation resulted from a single or multiple introduction(s) and to investigate potential evolutionary responses since the time of infestation. A total of 53 G. pallida samples (~1,042,000 individuals) were collected and analyzed, representing five different fields in Idaho, a greenhouse population, and a field in Scotland that was used for external comparison. According to genome-wide allele frequency and fixation index (Fst) analyses, most of the genetic variation was shared among the G. pallida populations in Idaho fields pre-fumigation, indicating that the infestation likely resulted from a single introduction. Temporal patterns of genome-wide polymorphisms involving (1) pre-fumigation field samples collected in 2007 and 2014 and (2) pre- and post-fumigation samples revealed nucleotide variants (SNPs, single-nucleotide polymorphisms) with significantly differentiated allele frequencies indicating genetic differentiation. This study provides insights into the genetic origins and adaptive potential of G. pallida invading new environments.


2012 ◽  
Vol 52 (3) ◽  
pp. 115 ◽  
Author(s):  
D. Boichard ◽  
F. Guillaume ◽  
A. Baur ◽  
P. Croiseau ◽  
M. N. Rossignol ◽  
...  

Genomic selection is implemented in French Holstein, Montbéliarde, and Normande breeds (70%, 16% and 12% of French dairy cows). A characteristic of the model for genomic evaluation is the use of haplotypes instead of single-nucleotide polymorphisms (SNPs), so as to maximise linkage disequilibrium between markers and quantitative trait loci (QTLs). For each trait, a QTL-BLUP model (i.e. a best linear unbiased prediction model including QTL random effects) includes 300–700 trait-dependent chromosomal regions selected either by linkage disequilibrium and linkage analysis or by elastic net. This model requires an important effort to phase genotypes, detect QTLs, select SNPs, but was found to be the most efficient one among all tested ones. QTLs are defined within breed and many of them were found to be breed specific. Reference populations include 1800 and 1400 bulls in Montbéliarde and Normande breeds. In Holstein, the very large reference population of 18 300 bulls originates from the EuroGenomics consortium. Since 2008, ~65 000 animals have been genotyped for selection by Labogena with the 50k chip. Bulls genomic estimated breeding values (GEBVs) were made official in June 2009. In 2010, the market share of the young bulls reached 30% and is expected to increase rapidly. Advertising actions have been undertaken to recommend a time-restricted use of young bulls with a limited number of doses. In January 2011, genomic selection was opened to all farmers for females. Current developments focus on the extension of the method to a multi-breed context, to use all reference populations simultaneously in genomic evaluation.


2016 ◽  
Vol 43 (4) ◽  
pp. 799-803 ◽  
Author(s):  
Lauren Fitzpatrick ◽  
K. Alaine Broadaway ◽  
Lori Ponder ◽  
Sheila T. Angeles-Han ◽  
Kirsten Jenkins ◽  
...  

Objective.Juvenile idiopathic arthritis (JIA) affects children of all races. Prior studies suggest that phenotypic features of JIA in African American (AA) children differ from those of non-Hispanic white (NHW) children. We evaluated the phenotypic differences at presentation between AA and NHW children enrolled in the Childhood Arthritis and Rheumatology Research Alliance (CARRA) Registry, and replicated the findings in a JIA cohort from a large center in the southeastern United States.Methods.Children with JIA enrolled in the multicenter CARRA Registry and from Emory University formed the study and replication cohorts. Phenotypic data on non-Hispanic AA children were compared with NHW children with JIA using the chi-square test, Fisher’s exact test, and the Wilcoxon signed-rank test.Results.In all, 4177 NHW and 292 AA JIA cases from the CARRA Registry and 212 NHW and 71 AA cases from Emory were analyzed. AA subjects more often had rheumatoid factor (RF)-positive polyarthritis in both the CARRA (13.4% vs 4.7%, p = 5.3 × 10−7) and the Emory (26.8% vs 6.1%, p = 1.1 × 10−5) cohorts. AA children had positive tests for RF and cyclic citrullinated peptide antibodies (CCP) more frequently, but oligoarticular or early onset antinuclear antibody (ANA)-positive JIA less frequently in both cohorts. AA children were older at onset in both cohorts and this difference persisted after excluding RF-positive polyarthritis in the CARRA Registry (median age 8.5 vs 5.0 yrs, p = 1.4 × 10−8).Conclusion.Compared with NHW children, AA children with JIA are more likely to have RF/CCP-positive polyarthritis, are older at disease onset, and less likely to have oligoarticular or ANA-positive, early-onset JIA, suggesting that the JIA phenotype is different in AA children.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 76-76
Author(s):  
Seyed Milad Vahedi ◽  
Karim Karimi ◽  
Siavash Salek Ardestani ◽  
Younes Miar

Abstract Aleutian disease (AD) is a chronic persistent infection in domestic mink caused by Aleutian mink disease virus (AMDV). Female mink’s fertility and pelt quality depression are the main reasons for the AD’s negative economic impacts on the mink industry. A total number of 79 American mink from the Canadian Center for Fur Animal Research at Dalhousie University (Truro, NS, Canada) were classified based on the results of counter immunoelectrophoresis (CIEP) tests into two groups of positive (n = 48) and negative (n = 31). Whole-genome sequences comprising 4,176 scaffolds and 8,039,737 single nucleotide polymorphisms (SNPs) were used to trace the selection footprints for response to AMDV infection at the genome level. Window-based fixation index (Fst) and nucleotide diversity (θπ) statistics were estimated to compare positive and negative animals’ genomes. The overlapped top 1% genomic windows between two statistics were considered as potential regions underlying selection pressures. A total of 98 genomic regions harboring 33 candidate genes were detected as selective signals. Most of the identified genes were involved in the development and functions of immune system (PPP3CA, SMAP2, TNFRSF21, SKIL, and AKIRIN2), musculoskeletal system (COL9A2, PPP1R9A, ANK2, AKAP9, and STRIT1), nervous system (ASCL1, ZFP69B, SLC25A27, MCF2, and SLC7A14), reproductive system (CAMK2D, GJB7, SSMEM1, C6orf163), liver (PAH and DPYD), and lung (SLC35A1). Gene-expression network analysis showed the interactions among 27 identified genes. Moreover, pathway enrichment analysis of the constructed genes network revealed significant oxytocin (KEGG: hsa04921) and GnRH signaling (KEGG: hsa04912) pathways, which are likely to be impaired by AMDV leading to dams’ fecundity reduction. These results provided a perspective to the genetic architecture of response to AD in American mink and novel insight into the pathogenesis of AMDV.


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 357-365 ◽  
Author(s):  
Gilda Rose S. Amaral ◽  
Graciela M. Dias ◽  
Michiyo Wellington-Oguri ◽  
Luciane Chimetto ◽  
Mariana E. Campeão ◽  
...  

Vibrios are ubiquitous in the aquatic environment and can be found in association with animal or plant hosts. The range of ecological relationships includes pathogenic and mutualistic associations. To gain a better understanding of the ecology of these microbes, it is important to determine their phenotypic features. However, the traditional phenotypic characterization of vibrios has been expensive, time-consuming and restricted in scope to a limited number of features. In addition, most of the commercial systems applied for phenotypic characterization cannot characterize the broad spectrum of environmental strains. A reliable and possible alternative is to obtain phenotypic information directly from whole genome sequences. The aim of the present study was to evaluate the usefulness of whole genome sequences as a source of phenotypic information. We performed a comparison of the vibrio phenotypes obtained from the literature with the phenotypes obtained from whole genome sequences. We observed a significant correlation between the previously published phenotypic data and the phenotypic data retrieved from whole genome sequences of vibrios. Analysis of 26 vibrio genomes revealed that all genes coding for the specific proteins involved in the metabolic pathways responsible for positive phenotypes of the 14 diagnostic features (Voges–Proskauer reaction, indole production, arginine dihydrolase, ornithine decarboxylase, utilization of myo-inositol, sucrose and l-leucine, and fermentation of d-mannitol, d-sorbitol, l-arabinose, trehalose, cellobiose, d-mannose and d-galactose) were found in the majority of the vibrios genomes. Vibrio species that were negative for a given phenotype revealed the absence of all or several genes involved in the respective biochemical pathways, indicating the utility of this approach to characterize the phenotypes of vibrios. The absence of the global regulation and regulatory proteins in the Vibrio parahaemolyticus genome indicated a non-vibrio phenotype. Whole genome sequences represent an important source for the phenotypic identification of vibrios.


Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1895
Author(s):  
Arianna Bionda ◽  
Matteo Cortellari ◽  
Mara Bagardi ◽  
Stefano Frattini ◽  
Alessio Negro ◽  
...  

Cavalier King Charles spaniels (CKCSs) show the earliest onset and the highest incidence of myxomatous mitral valve disease (MMVD). Previous studies have suggested a polygenic inheritance of the disease in this breed and revealed an association with regions on canine chromosomes 13 and 14. Following clinical and echocardiographic examinations, 33 not-directly-related CKCSs were selected and classified as cases (n = 16) if MMVD was present before 5 years of age or as controls (n = 17) if no or very mild MMVD was present after 5 years of age. DNA was extracted from whole blood and genotyped with a Canine 230K SNP BeadChip instrument. Cases and controls were compared with three complementary genomic analyses (Wright’s fixation index—FST, cross-population extended haplotype homozygosity—XP-EHH, and runs of homozygosity—ROH) to identify differences in terms of heterozygosity and regions of homozygosity. The top 1% single-nucleotide polymorphisms (SNPs) were selected and mapped, and the genes were thoroughly investigated. Ten consensus genes were found localized on chromosomes 3-11-14-19, partially confirming previous studies. The HEPACAM2, CDK6, and FAH genes, related to the transforming growth factor β (TGF-β) pathway and heart development, also emerged in the ROH analysis. In conclusion, this work expands the knowledge of the genetic basis of MMVD by identifying genes involved in the early onset of MMVD in CKCSs.


2020 ◽  
Vol 98 (10) ◽  
Author(s):  
Hiruni R Wijesena ◽  
Stephen D Kachman ◽  
Clay A Lents ◽  
Jean-Jack Riethoven ◽  
Melanie D Trenhaile-Grannemann ◽  
...  

Abstract Sow fertility traits, such as litter size and the number of lifetime parities produced (reproductive longevity), are economically important. Selection for these traits is difficult because they are lowly heritable and expressed late in life. Age at puberty (AP) is an early indicator of reproductive longevity. Here, we utilized a custom Affymetrix single-nucleotide polymorphisms (SNPs) array (SowPro90) enriched with positional candidate genetic variants for AP and a haplotype-based genome-wide association study to fine map the genetic sources associated with AP and other fertility traits in research (University of Nebraska-Lincoln [UNL]) and commercial sow populations. Five major quantitative trait loci (QTL) located on four Sus scrofa chromosomes (SSC2, SSC7, SSC14, and SSC18) were discovered for AP in the UNL population. Negative correlations (r = −0.96 to −0.10; P < 0.0001) were observed at each QTL between genomic estimated breeding values for AP and reproductive longevity measured as lifetime number of parities (LTNP). Some of the SNPs discovered in the major QTL regions for AP were located in candidate genes with fertility-associated gene ontologies (e.g., P2RX3, NR2F2, OAS1, and PTPN11). These SNPs showed significant (P < 0.05) or suggestive (P < 0.15) associations with AP, reproductive longevity, and litter size traits in the UNL population and litter size traits in the commercial sows. For example, in the UNL population, when the number of favorable alleles of an SNP located in the 3′ untranslated region of PTPN11 (SSC14) increased, AP decreased (P < 0.0001), while LTNP increased (P < 0.10). Additionally, a suggestive difference in the observed NR2F2 isoforms usage was hypothesized to be the source of the QTL for puberty onset mapped on SSC7. It will be beneficial to further characterize these candidate SNPs and genes to understand their impact on protein sequence and function, gene expression, splicing process, and how these changes affect the phenotypic variation of fertility traits.


Sign in / Sign up

Export Citation Format

Share Document