scholarly journals A Potential Role of Coumestrol in Soybean Leaf Senescence and Its Interaction With Phytohormones

2021 ◽  
Vol 12 ◽  
Author(s):  
Bong-Gyu Mun ◽  
Hyun-Ho Kim ◽  
Heung Joo Yuk ◽  
Adil Hussain ◽  
Gary John Loake ◽  
...  

Coumestrol is a natural organic compound synthesized in soy leaves and functions as a phytoalexin. The coumestrol levels in plants are reported to increase upon insect attack. This study investigates the correlation between coumestrol, senescence, and the effect of phytohormones on the coumestrol levels in soybean leaves. Our analysis involving high-performance liquid chromatography and 2-D gel electrophoresis indicated a significant difference in the biochemical composition of soybean leaves at various young and mature growth stages. Eight chemical compounds were specifically detected in young leaves (V1) only, whereas three different coumestans isotrifoliol, coumestrol, and phaseol were detected only in mature, yellow leaves of the R6 and R7 growth stage. MALDI-TOF-MS analysis was used to identify two proteins 3,9 -dihydroxypterocarpan 6A-monooxygenase (CYP93A1) and isoflavone reductase homolog 2 (IFR2) only in mature leaves, which are key components of the coumestrol biosynthetic pathway. This indicates that senescence in soybean is linked to the accumulation of coumestrol. Following the external application of coumestrol, the detached V1-stage young leaves turned yellow and showed an interesting development of roots at the base of the midrib. Additionally, the application of phytohormones, including SA, methyl jasmonate (MeJA), and ethephon alone and in various combinations induced yellowing within 5 days of the application with a concomitant significant increase in endogenous coumestrol accumulation. This was also accompanied by a significant increase in the expression of genes CYP81E28 (Gm08G089500), CYP81E22 (Gm16G149300), GmIFS1, and GmIFS2. These results indicate that various coumestans, especially coumestrol, accumulate during leaf maturity, or senescence in soybean.

Author(s):  
Xiaoyu Su ◽  
Zhenbao Jia ◽  
Fei Tao ◽  
Jiamin Shen ◽  
Jingwen Xu ◽  
...  

Phytochemical-enriched edible greens, sweet potato leaves (Ipomoea batatas L.), have become popular due to potential health benefits. However, the phytochemical contents in sweet potato leaves and their subsequent change over harvest stages and growth condition are mostly unknown. In this study, the anthocyanin profile and content in leaves of four sweet potato cultivars, i.e., white-skinned and white-fleshed Bonita, red-skinned and orange-fleshed Beauregard, red-skinned and white-fleshed Murasaki and purple-skinned and purple-fleshed P40, were evaluated. Fourteen anthocyanins were isolated and identified by HPLC-MSI/MS. The most abundant was cyanidin 3-caffeoyl-p-hydroxybenzoyl sophoroside-5-glucoside, which comprised up to 20% of the total anthocyanins. Of the young leaves (1st and 2nd slip cuttings), Bonita contained the highest anthocyanin content followed by P40. Of the mature leaves (vine stage), Beauregard had the greatest anthocyanin (592.5 ± 86.4 mg/kg DW) and total phenolic (52.2 ± 3 mg GAE/g DW). It should be noted that the lowest anthocyanin and total phenolic content of shoots were found in P40, while tubers of P40 contain the highest content of each. Furthermore, the increase in leaf anthocyanin content over the growth stages that was observed in three of the cultivars but not in P40. No significant difference of anthocyanin content was found in Beauregard leaves grown in the high tunnels when compared with that in the open field. This study demonstrated for the first time that anthocyanin levels were significantly changed in response to various growth stages but not high tunnel condition, indicating that the effect of anthocyanin biosynthesis in sweet potato leaves is highly variable and genotype specific.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
M. Musse ◽  
G. Hajjar ◽  
N. Ali ◽  
B. Billiot ◽  
G. Joly ◽  
...  

Abstract Background Drought is a major consequence of global heating that has negative impacts on agriculture. Potato is a drought-sensitive crop; tuber growth and dry matter content may both be impacted. Moreover, water deficit can induce physiological disorders such as glassy tubers and internal rust spots. The response of potato plants to drought is complex and can be affected by cultivar type, climatic and soil conditions, and the point at which water stress occurs during growth. The characterization of adaptive responses in plants presents a major phenotyping challenge. There is therefore a demand for the development of non-invasive analytical techniques to improve phenotyping. Results This project aimed to take advantage of innovative approaches in MRI, phenotyping and molecular biology to evaluate the effects of water stress on potato plants during growth. Plants were cultivated in pots under different water conditions. A control group of plants were cultivated under optimal water uptake conditions. Other groups were cultivated under mild and severe water deficiency conditions (40 and 20% of field capacity, respectively) applied at different tuber growth phases (initiation, filling). Water stress was evaluated by monitoring soil water potential. Two fully-equipped imaging cabinets were set up to characterize plant morphology using high definition color cameras (top and side views) and to measure plant stress using RGB cameras. The response of potato plants to water stress depended on the intensity and duration of the stress. Three-dimensional morphological images of the underground organs of potato plants in pots were recorded using a 1.5 T MRI scanner. A significant difference in growth kinetics was observed at the early growth stages between the control and stressed plants. Quantitative PCR analysis was carried out at molecular level on the expression patterns of selected drought-responsive genes. Variations in stress levels were seen to modulate ABA and drought-responsive ABA-dependent and ABA-independent genes. Conclusions This methodology, when applied to the phenotyping of potato under water deficit conditions, provides a quantitative analysis of leaves and tubers properties at microstructural and molecular levels. The approaches thus developed could therefore be effective in the multi-scale characterization of plant response to water stress, from organ development to gene expression.


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Hyeon Ji Yeo ◽  
Seung-A Baek ◽  
Ramaraj Sathasivam ◽  
Jae Kwang Kim ◽  
Sang Un Park

AbstractThis study aimed to comprehensively analyze primary and secondary metabolites of three different-colored (white, pale green, and green) pak choi cultivars (Brassica rapa subsp. chinensis) using gas chromatography attached with time-of-flight mass spectrometry (GC-TOFMS) and high-performance liquid chromatography (HPLC). In total, 53 primary metabolites were identified and subjected to partial least-squares discriminant analysis. The result revealed a significant difference in the primary and secondary metabolites between the three pak choi cultivars. In addition, 49 hydrophilic metabolites were detected in different cultivars. Total phenolic and glucosinolate contents were highest in the pale green and green cultivars, respectively, whereas total carotenoid and chlorophyll contents were highest in the white cultivar. Superoxide dismutase activity, 2,2-diphenyl-1-picrylhydraz scavenging, and reducing power were slightly increased in the white, pale green, and green cultivars, respectively. In addition, a negative correlation between pigments and phenylpropanoids was discovered by metabolite correlation analysis. This approach will provide useful information for the development of strategies to enhance the biosynthesis of phenolics, glucosinolates, carotenoids, and chlorophyll, and to improve antioxidant activity in pak choi cultivars. In addition, this study supports the use of HPLC and GC-TOFMS-based metabolite profiling to explore differences in pak choi cultivars.


2017 ◽  
Vol 125 (10) ◽  
pp. 655-660
Author(s):  
Dong-Mei Wen ◽  
Sheng-Nan Xu ◽  
Wei-Jia Wang ◽  
Xiu-Ming Zhang ◽  
Ming-Huan Suo ◽  
...  

Abstract Objective The interference of the hemoglobin variant (Hb J-Bangkok) was evaluated on 4 different glycated hemoglobin assays and compared with a reference immuno assay. Methods An overall test of coincidence of 2 least-squares linear regression lines was performed to determine whether the presence of Hb J-Bangkok caused a statistically significant difference in HbA1c results compared with a reference immuno assay. Statistical analysis was performed on the difference of the estimated average glucose calculated from HbA1c values and fasting plasma glucose in the Hb J-Bangkok variant group using the different detection systems. Deming regression analysis was used to determinate whether Hb J-Bangkok had a significant interference on HbA1c results using an HbA1c±10% relative bias at 6% and 9% HbA1c as evaluation limits. Results Turbidimetric inhibition immunoassay method, and enzymatic methods were not affected by Hb J-Bangkok. However, Hb J-Bangkok showed statistically significant interference to the two ion-exchange high-performance liquid chromatography methods. Conclusion When performing HbA1c tests, clinical laboratory personnel should identify the Hb variant and select the appropriate methods or use alternative indicators.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4122
Author(s):  
Sarah A. Alkhalaf ◽  
Ahmed R. Ramadan ◽  
Christian Obuekwe ◽  
Ashraf M. El Nayal ◽  
Nasser Abotalib ◽  
...  

We followed a comparative approach to investigate how heavy vacuum gas oil (HVGO) affects the expression of genes involved in biosurfactants biosynthesis and the composition of the rhamnolipid congeners in Pseudomonas sp. AK6U. HVGO stimulated biosurfactants production as indicated by the lower surface tension (26 mN/m) and higher yield (7.8 g/L) compared to a glucose culture (49.7 mN/m, 0.305 g/L). Quantitative real-time PCR showed that the biosurfactants production genes rhlA and rhlB were strongly upregulated in the HVGO culture during the early and late exponential growth phases. To the contrary, the rhamnose biosynthesis genes algC, rmlA and rmlC were downregulated in the HVGO culture. Genes of the quorum sensing systems which regulate biosurfactants biosynthesis exhibited a hierarchical expression profile. The lasI gene was strongly upregulated (20-fold) in the HVGO culture during the early log phase, whereas both rhlI and pqsE were upregulated during the late log phase. Rhamnolipid congener analysis using high-performance liquid chromatography-mass spectrometry revealed a much higher proportion (up to 69%) of the high-molecularweight homologue Rha–Rha–C10–C10 in the HVGO culture. The results shed light on the temporal and carbon source-mediated shifts in rhamonlipids’ composition and regulation of biosynthesis which can be potentially exploited to produce different rhamnolipid formulations tailored for specific applications.


2018 ◽  
Vol 11 (3) ◽  
pp. 459-469 ◽  
Author(s):  
T.C. Murashiki ◽  
C. Chidewe ◽  
M.A. Benhura ◽  
L.R. Manema ◽  
B.M. Mvumi ◽  
...  

There is limited empirical evidence on the efficacy of hermetic storage containers in reducing mycotoxin occurrence in stored maize grain under smallholder field conditions. Levels of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) in maize samples collected from hermetic metal silos (148), hermetic grain bags (121) and conventional stores (179) during 2015 and 2016 storage seasons in two rural districts of Zimbabwe were assessed. AFB1 was determined using high performance liquid chromatography with post-column derivatisation and fluorescence detection, whilst FB1 was determined using direct competitive ELISA. All maize samples collected at harvest in 2015 and 2016 seasons contained FB1 at levels ranging from 10 to 462 μg/kg and 13 to 537 μg/kg, respectively. Use of hermetic containers did not seem to have any effect on the development of FB1 in stored maize grain, as there was no significant difference (P>0.05) in the increase of FB1 contamination in hermetic and conventional stores. Prior to storage, the levels of AFB1 in the maize ranged from below the limit of quantitation (LOQ) to 25.0 μg/kg, whilst levels during storage ranged from <LOQ to 8.60 μg/kg in hermetic silos, <LOQ to 8.37 μg/kg in hermetic bags and <LOQ to 791 μg/kg in conventional stores over the two storage seasons. The occurrence of AFB1 in maize stored in hermetic containers, was significantly (P<0.05) lower than that in conventional stores. Hermetic containers were more effective than conventional stores in limiting contamination of maize with AFB1 and subsequent human exposure to these toxins. Therefore, hermetic storage containers are recommended to smallholder maize producers for safe and effective limitation of AFB1 contamination during storage and hence reduce exposure among consumers.


2019 ◽  
Vol 34 (1) ◽  
Author(s):  
Francesco Rucci ◽  
Maria Sole Cigoli ◽  
Valeria Marini ◽  
Carmen Fucile ◽  
Francesca Mattioli ◽  
...  

Abstract Background The thiopurine S-methyltransferase (TPMT)/azathioprine (AZA) gene-drug pair is one of the most well-known pharmacogenetic markers. Despite this, few studies investigated the implementation of TPMT testing and the combined evaluation of genotype and phenotype in multidisciplinary clinical settings where patients are undergoing chronic therapy with AZA. Methods A total of 356 AZA-treated patients for chronic autoimmune diseases were enrolled. DNA was isolated from whole blood and the samples were analyzed for the c.460G>A and c.719A>G variants by the restriction fragment length polymorphism (RFLP) technique and sequenced for the c.238G>C variant. The TPMT enzyme activity was determined in erythrocytes by a high-performance liquid chromatography (HPLC) assay. Results All the patients enrolled were genotyped while the TPMT enzyme activity was assessed in 41 patients. Clinical information was available on 181 patients. We found no significant difference in the odds of having adverse drug reactions (ADRs) in wild-type patients and variant allele carriers, but the latter had an extra risk of experiencing hematologically adverse events. The enzyme activity was significantly associated to genotype. Conclusions TPMT variant allele carriers have an extra risk of experiencing hematologically adverse events compared to wild-type patients. Interestingly, only two out of 30 (6.6%) patients had discordant results between genotype, phenotype and onset of ADRs.


2014 ◽  
Vol 32 (1) ◽  
pp. 227-232 ◽  
Author(s):  
M.A.P. Oliveira ◽  
U.R. Antuniassi ◽  
E.D. Velini ◽  
R.B. Oliveira ◽  
J.F. Salvador ◽  
...  

The objective of the present study was to analyze the influence of spray mixture volume and flight height on herbicide deposition in aerial applications on pastures. The experimental plots were arranged in a pasture area in the district of Porto Esperidião (Mato Grosso, Brazil). In all of the treatments, the applications contained the herbicides aminopyralid and fluroxypyr (Dominum) at the dose of 2.5 L c.p. ha-1, including the adjuvant mineral oil (Joint Oil) at the dose of 1.0 L and a tracer to determine the deposition by high-performance liquid chromatography (HPLC) (rhodamine at a concentration of 0.6%). The experiment consisted of nine treatments that comprised the combinations of three spray volumes (20, 30 and 50 L ha-1) and three flight heights (10, 30 and 40 m). The results showed that, on average, there was a tendency for larger deposits for the smallest flight heights, with a significant difference between the heights of 10 and 40 m. There was no significant difference among the deposits obtained with the different spray mixture volumes.


1970 ◽  
Vol 17 ◽  
pp. 59-68 ◽  
Author(s):  
Susanna Phoboo ◽  
Marcia Da Silva Pinto ◽  
Prasanta C. Bhowmik ◽  
Pramod Kumar Jha ◽  
Kalidas Shetty

Swertia chirayita is an important medicinal plant from Nepal with anti-diabetic, anti-pyretic, anti-malarial and anti-inflammatory potential and used in therapeutic herbal preparations in parts of South Asia. The main phytochemicals in crude aqueous and ethanolic extracts of different plant parts of Swertia chirayita collected from nine different districts of Nepal representing West, East and Central Nepal were quantified using HPLC/DAD (High Performance Liquid Chromatography-Diode Array Detection). The quantities of these phytochemicals were also compared between wild and cultivated plant parts of Swertia chirayita. Amarogentin, mangiferin, swertiamarin were the main phytochemicals in all extracts. The highest quantity of all the three phytochemicals was found in IL (inflorescence and leaf mixture) of all the collected plants samples. There was no significant difference in the amounts of these three phytochemicals between extracts from wild and cultivated plants. The result from this study substantiates the validity of cultivated Swertia chirayita for medicinal purposes and trade.Key words:  Swertia chirayita; HPLC/DAD; Wild; Cultivated; Phytochemicals; Quantification; Mangiferin; Swertiamarin; AmarogentinDOI: 10.3126/eco.v17i0.4118EcoprintAn International Journal of EcologyVol. 17, 2010Page: 59-68Uploaded date: 3 January, 2011


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A150-A151
Author(s):  
S Hartmann ◽  
M Baumert

Abstract Introduction With steadily growing numbers of patients with a depressive disorder, the effect of antidepressants on sleep architecture is of increasing concern. One major oral antidepressant medication is trazadone, which has also been prescribed in low doses for sleep insomnia treatment. Here, we investigate the effect of trazadone on NREM sleep instability also known as cyclic alternating pattern (CAP) in community-dwelling older men. Methods CAP was scored in overnight EEG recordings from 41 older men on trazadone (TRZ) and 50 age-matched men who did not use trazadone (NTRZ), participating in the Osteoporotic Fractures in Men Sleep Study. A high performance automated detection system determined the ratio between CAP time and NREM sleep time (CAP rate), the number of A1-phases per hour of NREM sleep (A1 index), and the number of A2+A3-phases per hour of NREM sleep (A2+A3 index). The effect of TRZ on CAP parameters was determined using the Mann-Whitney U test. Results CAP rate was significantly decreased in men using trazadone (NTRZ: 58.2±19.7%, TRZ: 47.9±15.9%) as compared to non-trazadone user (p &lt; 0.01). Subtype indices did not show any significant difference between both groups but to some extent less frequent A2-A3 phases for TRZ user (A1-phases: NTRZ 13.0±18.7 no./h vs. TRZ 10.8±20.4 no./h, p = 0.35; A2+A3-phases: NTRZ 51.5±33.7 no./h vs. TRZ 44.7±23.3 no./h, p = 0.068). Conclusion CAP rate was significantly decreased in older men on trazadone as compared to older men who did not use trazadone, suggesting that trazadone usage has a stabilising effect on sleep micro-structure. Support The National Heart, Lung, and Blood Institute (NHLBI) provides funding for the MrOS Sleep ancillary study “Outcomes of Sleep Disorders in Older Men” under the following grant numbers: R01 HL071194, R01 HL070848, R01 HL070847, R01 HL070842, R01 HL070841, R01 HL070837, R01 HL070838, and R01 HL070839.


Sign in / Sign up

Export Citation Format

Share Document