scholarly journals PpMYB36 Encodes a MYB-Type Transcription Factor That Is Involved in Russet Skin Coloration in Pear (Pyrus pyrifolia)

2021 ◽  
Vol 12 ◽  
Author(s):  
Changqing Ma ◽  
Xu Wang ◽  
Mengyuan Yu ◽  
Xiaodong Zheng ◽  
Zhijuan Sun ◽  
...  

Fruit color is one of the most important external qualities of pear (Pyrus pyrifolia) fruits. However, the mechanisms that control russet skin coloration in pear have not been well characterized. Here, we explored the molecular mechanisms that determine the russet skin trait in pear using the F1 population derived from a cross between russet skin (‘Niitaka’) and non-russet skin (‘Dangshansu’) cultivars. Pigment measurements indicated that the lignin content in the skin of the russet pear fruits was greater than that in the non-russet pear skin. Genetic analysis revealed that the phenotype of the russet skin pear is associated with an allele of the PpRus gene. Using bulked segregant analysis combined with the genome sequencing (BSA-seq), we identified two simple sequence repeat (SSR) marker loci linked with the russet-colored skin trait in pear. Linkage analysis showed that the PpRus locus maps to the scaffold NW_008988489.1: 53297-211921 on chromosome 8 in the pear genome. In the mapped region, the expression level of LOC103929640 was significantly increased in the russet skin pear and showed a correlation with the increase of lignin content during the ripening period. Genotyping results demonstrated that LOC103929640 encoding the transcription factor MYB36 is the causal gene for the russet skin trait in pear. Particularly, a W-box insertion at the PpMYB36 promoter of russet skin pears is essential for PpMYB36-mediated regulation of lignin accumulation and russet coloration in pear. Overall, these results show that PpMYB36 is involved in the regulation of russet skin trait in pear.

2021 ◽  
Author(s):  
Dongjie Jia ◽  
Peng Wu ◽  
Fei Shen ◽  
Wei Li ◽  
Xiaodong Zheng ◽  
...  

Abstract Deciphering the mechanism of malate accumulation in apple (Malus domestica Borkh.) fruits can help to improve their flavor quality and enhance their benefits for human health. Here, we analyzed malate content as a quantitative trait that is determined mainly by genetic effects. In a previous study, we identified an R2R3−MYB transcription factor named MdMYB44 that was a candidate gene in qtl08.1 (quantitative trait locus mapped to chromosome 8) of fruit malate content. In the present study, we established that MdMYB44 negatively regulates fruit malate accumulation by repressing the promoter activity of the malate-associated genes Ma1 (Al-Activated Malate Transporter 9), Ma10 (P-type ATPase 10), MdVHA-A3 (V-type ATPase A3), and MdVHA-D2 (V-type ATPase D2). Two single-nucleotide polymorphisms (SNPs) in the MdMYB44 promoter, SNP A/G and SNP T/−, were experimentally shown to associate with fruit malate content. The TATA-box in the MdMYB44 promoter in the presence of SNP A enhances the basal activity of the MdMYB44 promoter. The binding of a basic-helix–loop–helix transcription factor MdbHLH49 to the MdMYB44 promoter was enhanced by the presence of SNP T, leading to increased MdMYB44 transcript levels and reduced malate accumulation. Furthermore, MdbHLH49 interacts with MdMYB44 and enhances MdMYB44 activity. The two SNPs could be used in combination to select for sour or non-sour apples, providing a valuable tool for the selection of fruit acidity by the apple breeding industry. This research is important for understanding the complex molecular mechanisms of fruit malate accumulation and accelerating the development of germplasm innovation in apple species and cultivars.


2011 ◽  
Vol 136 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Caihong Wang ◽  
Yike Tian ◽  
Emily J. Buck ◽  
Susan E. Gardiner ◽  
Hongyi Dai ◽  
...  

European pear (Pyrus communis) ‘Aihuali’ carrying the dwarf character originating from ‘Nain Vert’ was crossed with ‘Chili’ (Pyrus bretschneideri). A total of 352 F1 progenies was produced to investigate the inheritance of the dwarf trait, and 111 of these were used to develop molecular markers. Chi-square analysis showed that the character fitted a 1:1 ratio indicative of a single dominant gene, which we have named PcDw. Using a bulked segregant analysis approach with 500 random amplified polymorphic DNA (RAPD) and 51 simple sequence repeat (SSR) markers from pear (Pyrus pyrifolia and P. communis) and apple (Malus ×domestica), four markers were identified as cosegregating with the dwarf character. Two of these were fragments produced by the S1212 and S1172 RAPD primers, and the other two were the pear SSR markers KA14 and TsuENH022. The RAPD markers were converted into sequence-characterized amplified regions (SCARs) and designated S1212-SCAR318 and S1172-SCAR930 and, with the SSR markers KA14 and TsuENH022, were positioned 5.9, 9.5, 8.2, and 0.9 cM from the PcDw gene, respectively. Mapping of the KA14 and TsuENH022 markers enabled the location of the PcDw gene on LG 16 of the pear genetic linkage map.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Nicolás Cruz ◽  
Tamara Méndez ◽  
Patricio Ramos ◽  
Daniela Urbina ◽  
Andrea Vega ◽  
...  

AbstractThe molecular mechanisms underlying inclination responses in trees are unclear. In this study, we identified a MADS-box transcription factor differentially expressed early after inclination in the stems of Pinus radiata D. Don. PrMADS10 has a CDS of 582 bp and encodes a group II MADS-box transcription factor. We measured highest accumulation of this transcript on the lower side of inclined pine stems. In an effort to identify putative targets, we stably transformed Arabidopsis thaliana with a 35S::PrMADS10 construct. Transcriptome analysis revealed 1,219 genes differentially-expressed, with 690 and 529 genes up- and down-regulated respectively, when comparing the transgenic and wild-type. Differentially-expressed genes belong to different biological processes, but were enriched in cell wall remodeling and phenylpropanoid metabolic functions. Interestingly, lignin content was 30% higher in transgenic as compared to wild-type plants consistent with observed changes in gene expression. Differentially expressed transcription factors and phenylpropanoid genes were analyzed using STRING. Several MYB and NAC transcription factors showed interactions with genes of the phenylpropanoid pathway. Together, these results implicate PrMADS10 as a regulatory factor, triggering the expression of other transcription factors and genes involved in the synthesis of lignin.


Author(s):  
David P. Bazett-Jones ◽  
Mark L. Brown

A multisubunit RNA polymerase enzyme is ultimately responsible for transcription initiation and elongation of RNA, but recognition of the proper start site by the enzyme is regulated by general, temporal and gene-specific trans-factors interacting at promoter and enhancer DNA sequences. To understand the molecular mechanisms which precisely regulate the transcription initiation event, it is crucial to elucidate the structure of the transcription factor/DNA complexes involved. Electron spectroscopic imaging (ESI) provides the opportunity to visualize individual DNA molecules. Enhancement of DNA contrast with ESI is accomplished by imaging with electrons that have interacted with inner shell electrons of phosphorus in the DNA backbone. Phosphorus detection at this intermediately high level of resolution (≈lnm) permits selective imaging of the DNA, to determine whether the protein factors compact, bend or wrap the DNA. Simultaneously, mass analysis and phosphorus content can be measured quantitatively, using adjacent DNA or tobacco mosaic virus (TMV) as mass and phosphorus standards. These two parameters provide stoichiometric information relating the ratios of protein:DNA content.


2019 ◽  
Vol 132 (23) ◽  
Author(s):  
Wenhui Zhou ◽  
Kayla M. Gross ◽  
Charlotte Kuperwasser

ABSTRACT The transcription factor Snai2, encoded by the SNAI2 gene, is an evolutionarily conserved C2H2 zinc finger protein that orchestrates biological processes critical to tissue development and tumorigenesis. Initially characterized as a prototypical epithelial-to-mesenchymal transition (EMT) transcription factor, Snai2 has been shown more recently to participate in a wider variety of biological processes, including tumor metastasis, stem and/or progenitor cell biology, cellular differentiation, vascular remodeling and DNA damage repair. The main role of Snai2 in controlling such processes involves facilitating the epigenetic regulation of transcriptional programs, and, as such, its dysregulation manifests in developmental defects, disruption of tissue homeostasis, and other disease conditions. Here, we discuss our current understanding of the molecular mechanisms regulating Snai2 expression, abundance and activity. In addition, we outline how these mechanisms contribute to disease phenotypes or how they may impact rational therapeutic targeting of Snai2 dysregulation in human disease.


Author(s):  
Junping Yu ◽  
Guolong Zhao ◽  
Wei Li ◽  
Ying Zhang ◽  
Peng Wang ◽  
...  

Abstract Key message Identification and functional analysis of the male sterile gene MS6 in Glycine max. Abstract Soybean (Glycine max (L.) Merr.) is an important crop providing vegetable oil and protein. The male sterility-based hybrid breeding is a promising method for improving soybean yield to meet the globally growing demand. In this research, we identified a soybean genic male sterile locus, MS6, by combining the bulked segregant analysis sequencing method and the map-based cloning technology. MS6, highly expressed in anther, encodes an R2R3 MYB transcription factor (GmTDF1-1) that is homologous to Tapetal Development and Function 1, a key factor for anther development in Arabidopsis and rice. In male sterile ms6 (Ames1), the mutant allele contains a missense mutation, leading to the 76th leucine substituted by histidine in the DNA binding domain of GmTDF1-1. The expression of soybean MS6 under the control of the AtTDF1 promoter could rescue the male sterility of attdf1 but ms6 could not. Additionally, ms6 overexpression in wild-type Arabidopsis did not affect anther development. These results evidence that GmTDF1-1 is a functional TDF1 homolog and L76H disrupts its function. Notably, GmTDF1-1 shows 92% sequence identity with another soybean protein termed as GmTDF1-2, whose active expression also restored the fertility of attdf1. However, GmTDF1-2 is constitutively expressed at a very low level in soybean, and therefore, not able to compensate for the MS6 deficiency. Analysis of the TDF1-involved anther development regulatory pathway showed that expressions of the genes downstream of TDF1 are significantly suppressed in ms6, unveiling that GmTDF1-1 is a core transcription factor regulating soybean anther development.


2021 ◽  
Vol 22 (4) ◽  
pp. 1861
Author(s):  
Jemima Seidenberg ◽  
Mara Stellato ◽  
Amela Hukara ◽  
Burkhard Ludewig ◽  
Karin Klingel ◽  
...  

Background: Pathological activation of cardiac fibroblasts is a key step in development and progression of cardiac fibrosis and heart failure. This process has been associated with enhanced autophagocytosis, but molecular mechanisms remain largely unknown. Methods and Results: Immunohistochemical analysis of endomyocardial biopsies showed increased activation of autophagy in fibrotic hearts of patients with inflammatory cardiomyopathy. In vitro experiments using mouse and human cardiac fibroblasts confirmed that blockade of autophagy with Bafilomycin A1 inhibited fibroblast-to-myofibroblast transition induced by transforming growth factor (TGF)-β. Next, we observed that cardiac fibroblasts obtained from mice overexpressing transcription factor Fos-related antigen 2 (Fosl-2tg) expressed elevated protein levels of autophagy markers: the lipid modified form of microtubule-associated protein 1A/1B-light chain 3B (LC3BII), Beclin-1 and autophagy related 5 (Atg5). In complementary experiments, silencing of Fosl-2 with antisense GapmeR oligonucleotides suppressed production of type I collagen, myofibroblast marker alpha smooth muscle actin and autophagy marker Beclin-1 in cardiac fibroblasts. On the other hand, silencing of either LC3B or Beclin-1 reduced Fosl-2 levels in TGF-β-activated, but not in unstimulated cells. Using a cardiac hypertrophy model induced by continuous infusion of angiotensin II with osmotic minipumps, we confirmed that mice lacking either Fosl-2 (Ccl19CreFosl2flox/flox) or Atg5 (Ccl19CreAtg5flox/flox) in stromal cells were protected from cardiac fibrosis. Conclusion: Our findings demonstrate that Fosl-2 regulates autophagocytosis and the TGF-β-Fosl-2-autophagy axis controls differentiation of cardiac fibroblasts. These data provide a new insight for the development of pharmaceutical targets in cardiac fibrosis.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kuo Yang ◽  
Jian-Ping An ◽  
Chong-Yang Li ◽  
Xue-Na Shen ◽  
Ya-Jing Liu ◽  
...  

AbstractJasmonic acid (JA) plays an important role in regulating leaf senescence. However, the molecular mechanisms of leaf senescence in apple (Malus domestica) remain elusive. In this study, we found that MdZAT10, a C2H2-type zinc finger transcription factor (TF) in apple, markedly accelerates leaf senescence and increases the expression of senescence-related genes. To explore how MdZAT10 promotes leaf senescence, we carried out liquid chromatography/mass spectrometry screening. We found that MdABI5 physically interacts with MdZAT10. MdABI5, an important positive regulator of leaf senescence, significantly accelerated leaf senescence in apple. MdZAT10 was found to enhance the transcriptional activity of MdABI5 for MdNYC1 and MdNYE1, thus accelerating leaf senescence. In addition, we found that MdZAT10 expression was induced by methyl jasmonate (MeJA), which accelerated JA-induced leaf senescence. We also found that the JA-responsive protein MdBT2 directly interacts with MdZAT10 and reduces its protein stability through ubiquitination and degradation, thereby delaying MdZAT10-mediated leaf senescence. Taken together, our results provide new insight into the mechanisms by which MdZAT10 positively regulates JA-induced leaf senescence in apple.


2021 ◽  
Vol 22 (16) ◽  
pp. 8461
Author(s):  
Emanuela Chiarella ◽  
Annamaria Aloisio ◽  
Stefania Scicchitano ◽  
Heather Mandy Bond ◽  
Maria Mesuraca

Powerful bioinformatics tools have provided a wealth of novel miRNA–transcription factor networks crucial in controlling gene regulation. In this review, we focus on the biological functions of miRNAs targeting ZNF521, explaining the molecular mechanisms by which the dysregulation of this axis contributes to malignancy. ZNF521 is a stem cell-associated co-transcription factor implicated in the regulation of hematopoietic, neural, and mesenchymal stem cells. The aberrant expression of ZNF521 transcripts, frequently associated with miRNA deregulation, has been detected in several tumors including pancreatic, hepatocellular, gastric, bladder transitional cell carcinomas as well as in breast and ovarian cancers. miRNA expression profiling tools are currently identifying a multitude of miRNAs, involved together with oncogenes and TFs in the regulation of oncogenesis, including ZNF521, which may be candidates for diagnostic and prognostic biomarkers of cancer.


2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Olivia J. Marola ◽  
Stephanie B. Syc-Mazurek ◽  
Gareth R. Howell ◽  
Richard T. Libby

Abstract Glaucoma is a neurodegenerative disease characterized by loss of retinal ganglion cells (RGCs), the output neurons of the retina. Multiple lines of evidence show the endothelin (EDN, also known as ET) system is important in glaucomatous neurodegeneration. To date, the molecular mechanisms within RGCs driving EDN-induced RGC death have not been clarified. The pro-apoptotic transcription factor JUN (the canonical target of JNK signaling) and the endoplasmic reticulum stress effector and transcription factor DNA damage inducible transcript 3 (DDIT3, also known as CHOP) have been shown to act downstream of EDN receptors. Previous studies demonstrated that JUN and DDIT3 were important regulators of RGC death after glaucoma-relevant injures. Here, we characterized EDN insult in vivo and investigated the role of JUN and DDIT3 in EDN-induced RGC death. To accomplish this, EDN1 ligand was intravitreally injected into the eyes of wildtype, Six3-cre+Junfl/fl (Jun−/−), Ddit3 null (Ddit3−/−), and Ddit3−/−Jun−/− mice. Intravitreal EDN1 was sufficient to drive RGC death in vivo. EDN1 insult caused JUN activation in RGCs, and deletion of Jun from the neural retina attenuated RGC death after EDN insult. However, deletion of Ddit3 did not confer significant protection to RGCs after EDN1 insult. These results indicate that EDN caused RGC death via a JUN-dependent mechanism. In addition, EDN signaling is known to elicit potent vasoconstriction. JUN signaling was shown to drive neuronal death after ischemic insult. Therefore, the effects of intravitreal EDN1 on retinal vessel diameter and hypoxia were explored. Intravitreal EDN1 caused transient retinal vasoconstriction and regions of RGC and Müller glia hypoxia. Thus, it remains a possibility that EDN elicits a hypoxic insult to RGCs, causing apoptosis via JNK-JUN signaling. The importance of EDN-induced vasoconstriction and hypoxia in causing RGC death after EDN insult and in models of glaucoma requires further investigation.


Sign in / Sign up

Export Citation Format

Share Document