scholarly journals A Scooping-Binding Robotic Gripper for Handling Various Food Products

2021 ◽  
Vol 8 ◽  
Author(s):  
Zhongkui Wang ◽  
Haruki Furuta ◽  
Shinichi Hirai ◽  
Sadao Kawamura

Food products are usually difficult to handle for robots because of their large variations in shape, size, softness, and surface conditions. It is ideal to use one robotic gripper to handle as many food products as possible. In this study, a scooping-binding robotic gripper is proposed to achieve this goal. The gripper was constructed using a pneumatic parallel actuator and two identical scooping-binding mechanisms. The mechanism consists of a thin scooping plate and multiple rubber strings for binding. When grasping an object, the mechanisms actively makes contact with the environment for scooping, and the object weight is mainly supported by the scooping plate. The binding strings are responsible for stabilizing the grasping by wrapping around the object. Therefore, the gripper can perform high-speed pick-and-place operations. Contact analysis was conducted using a simple beam model and a finite element model that were experimentally validated. Tension property of the binding string was characterized and an analytical model was established to predict binding force based on object geometry and binding displacement. Finally, handling tests on 20 food items, including products with thin profiles and slippery surfaces, were performed. The scooping-binding gripper succeeded in handling all items with a takt time of approximately 4 s. The gripper showed potential for actual applications in the food industry.

2010 ◽  
Vol 135 ◽  
pp. 238-242
Author(s):  
Yue Ming Liu ◽  
Ya Dong Gong ◽  
Wei Ding ◽  
Ting Chao Han

In this paper, effective finite element model have been developed to simulation the plastic deformation cutting in the process for a single particle via the software of ABAQUS, observing the residual stress distribution in the machined surface, the experiment of grinding cylindrical workpiece has been brought in the test of super-high speed grinding, researching the residual stress under the machined surface by the method of X-ray diffraction, which can explore the different stresses from different super-high speed in actual, and help to analyze the means of reducing the residual stresses in theory.


2012 ◽  
Vol 586 ◽  
pp. 269-273
Author(s):  
Chul Su Kim ◽  
Gil Hyun Kang

To assure the safety of the power bogies for train, it is important to perform the durability analysis of reduction gear considering a variation of velocity and traction motor capability. In this study, two types of applied load histories were constructed from driving histories considering the tractive effort and the train running curves by using dynamic analysis software (MSC.ADAMS). Moreover, this study was performed by evaluating fatigue damage of the reduction gears for rolling stock using durability analysis software (MSC.FATIGUE). The finite element model for evaluating the carburizing effect on the gear surface was used for predicting the fatigue life of the gears. The results showed that the fatigue life of the reduction gear would decrease with an increasing numbers of stops at station.


2021 ◽  
Vol 11 (8) ◽  
pp. 3520
Author(s):  
Xiaopei Cai ◽  
Qian Zhang ◽  
Yanrong Zhang ◽  
Qihao Wang ◽  
Bicheng Luo ◽  
...  

In order to find out the influence of subgrade frost heave on the deformation of track structure and track irregularity of high-speed railways, a nonlinear damage finite element model for China Railway Track System III (CRTSIII) slab track subgrade was established based on the constitutive theory of concrete plastic damage. The analysis of track structure deformation under different subgrade frost heave conditions was focused on, and amplitude the limit of subgrade frost heave was put forward according to the characteristics of interlayer seams. This work is expected to provide guidance for design and construction. Subgrade frost heave was found to cause cosine-type irregularities of rails and the interlayer seams in the track structure, and the displacement in lower foundation mapping to rail surfaces increased. When frost heave occured in the middle part of the track slab, it caused the greatest amount of track irregularity, resulting in a longer and higher seam. Along with the increase in frost heave amplitude, the length of the seam increased linearly whilst its height increased nonlinearly. When the frost heave amplitude reached 35 mm, cracks appeared along the transverse direction of the upper concrete surface on the base plate due to plastic damage; consequently, the base plate started to bend, which reduced interlayer seams. Based on the critical value of track structures’ interlayer seams under different frost heave conditions, four control limits of subgrade frost heave at different levels of frost heave amplitude/wavelength were obtained.


2021 ◽  
pp. 107754632110267
Author(s):  
Jiandong Huang ◽  
Xin Li ◽  
Jia Zhang ◽  
Yuantian Sun ◽  
Jiaolong Ren

The dynamic analysis has been successfully used to predict the pavement response based on the finite element modeling, during which the stiffness and mass matrices have been established well, whereas the method to determine the damping matrix based on Rayleigh damping is still under development. This article presents a novel method to determine the two parameters of the Rayleigh damping for dynamic modeling in pavement engineering. Based on the idealized shear beam model, a more reasonable method to calculate natural frequencies of different layers is proposed, by which the global damping matrix of the road pavement can be assembled. The least squares method is simplified and used to calculate the frequency-independent damping. The best-fit Rayleigh damping is obtained by only determining the natural frequencies of the two modal. Finite element model and in-situ field test subjected by the same falling weight deflectometer pulse loads are performed to validate the accuracy of this method. Good agreements are noted between simulation and field in-situ results demonstrating that this method can provide a more accurate approach for future finite element modeling and back-calculation.


2011 ◽  
Vol 97-98 ◽  
pp. 3-9
Author(s):  
Yang Wang ◽  
Quan Mei Gong ◽  
Mei Fang Li

The slab track is a new sort of track structure, which has been widely used in high-speed rail and special line for passenger. However, the ballastless track structure design theory is still not perfect and can not meet the requirements of current high-speed rail and passenger line ballastless track. In this paper, composite beam method is used to calculate the deflection of the track plate and in this way the vertical supporting stress distribution of the track plate can be gotten which set a basis for the follow-up study of the dynamic stress distribution in the subgrade. Slab track plate’s bearing stress under moving load is analyzed through Matlab program. By calculation and analysis, it is found that the deflection of track plate and the rail in the double-point-supported finite beam model refers to the rate of spring coefficient of the fastener and the mortar.The supporting stress of the rail plate is inversely proportional to the supporting stress of the rail. The two boundary conditions of that model ,namely, setting the end of the model in the seams of the track plate or not , have little effect on the results. We can use the supporting stress of the track plates on state 1to get the distribution of the supporting stress in the track plate when bogies pass. Also, when the dynamic load magnification factor is 1.2, the track plate supporting stress of CRST I & CRST II-plate non-ballasted structure is around 40kPa.


2011 ◽  
Vol 399-401 ◽  
pp. 1806-1811
Author(s):  
Yong Hong Chen ◽  
Peng Chen ◽  
Ai Qin Tian

The finite element model of the roof of aluminum high-speed train was established, double ellipsoid heat source was employed, and heat elastic-plastic theory was used to simulate welding residual stress of the component under different welding sequence based on the finite element analysis software SYSWELD. The distribution law of welding residual stress was obtained. And the effects of the welding sequence on the value and distribution of residual stress was analyzed. The numerical results showed that the simulation data agree well with experimental test data. The maximum residual stress appears in the weld seam and nearby. The residual stress value decreases far away from the welding center. Welding sequence has a significant impact on the final welding residual stress when welding the roof of aluminum body. The side whose residual stress needs to be controlled should be welded first.


Author(s):  
Irena Łącka

Polish food industry challenges result from current and future changes in world’s economy i.e. the need of the optimization of manufacturing process, the increase of effectiveness of the use of resources, solving the personnel problems together and implementing innovations and technical progress. The aim of the article was to present the innovative activity of companies of this sector in years 2010-2016 with indicating tendencies in this scope. The analysis of investments in machines and devices aimed at evaluation of condition and prospects of technical progress of entities in food industry. The research has shown that the majority of this sector is weakly prepared to facing the challenges of new economy. This is indicated by low expenditures into the innovative activity of entities, the structure of those expenditures as well as results of activities during examined period. The analysis of the statistical data have shown that during this tested time the producers of food products and beverages have increased their investment in machines and devices in order to increase their effectiveness of the use of resources and modernize their machinery. During the research following methods were used: study of national and foreign literature, comparative analysis and elements of descriptive statistics. To analyze the innovative activity and investments of entities in machines and devices the data of public statistics was used.


2015 ◽  
Vol 59 (02) ◽  
pp. 69-84
Author(s):  
Jason John McVicar ◽  
Jason Lavroff ◽  
Michael Richard Davis ◽  
Giles Thomas

When the surface of a ship meets the water surface at an acute angle with a high relative velocity, significant short-duration forces can act on the hull plating. Such an event is referred to as a slam. Slam loads imparted on ships are generally considered to be of an impulsive nature. As such, slam loads induce vibration in the global hull structure that has implications for both hull girder bending strength and fatigue life of a vessel. A modal method is often used for structural analysis whereby higher order modes are neglected to reduce computational effort. The effect of the slam load temporal distribution on the whipping response and vertical bending moment are investigated here by using a continuous beam model with application to a 112 m INCAT wave-piercing catamaran and correlation to full-scale and model-scale experimental data. Experimental studies have indicated that the vertical bending moment is dominated by the fundamental longitudinal bending mode of the structure. However, it is shown here that although the fundamental mode is dominant in the global structural response, the higher order modes play a significant role in the early stages of the response and may not be readily identifiable if measurements are not taken sufficiently close to the slam location. A relationship between the slam duration and the relative modal response magnitudes is found, which is useful in determining the appropriate truncation of a modal solution.


2021 ◽  
Vol 2 (517) ◽  
pp. 308-315
Author(s):  
S. M. Sukacheva-Trunina ◽  

The article is aimed at forming a methodical approach to the assessment of tendencies in production, sales and organization of consumption of food products and services, which includes all the components of the food sector and allows to conduct a comprehensive assessment of tendencies in its development. The proposed methodical approach includes assessment of the status and dynamics of food supply to the population, assessment of the status and dynamics of indicators of agricultural enterprises, food industry, trade in foods, restaurant economy and assessment of the factors that influence the development of the food sector. The use of the proposed methodical approach allows to reasonably make decisions on the development of a strategy for the development of food sector enterprises. The conducted studies have shown that in Ukraine as a whole and in its regions in particular in recent years there have been positive tendencies in the production, sale and organization of consumption of food products and services. At this, sales of foods by enterprises of both agriculture and food industry is much higher than by retail enterprises of food products and restaurant enterprises, which indicates the sufficient provision with food products to the financially reliable demand of the population of Ukraine. Prospects for further research in this direction are the development of methodical instrumentarium for assessing the effectiveness of management of food sector enterprises, which will be adapted to modern conditions for the implementation of specific managerial decisions.


Sign in / Sign up

Export Citation Format

Share Document