scholarly journals Integrated Bioplant and Groundnut Husk Biochar Compost Application on Yield of Lettuce in a Rhodic Kandiustalf

2021 ◽  
Vol 5 ◽  
Author(s):  
Eric Kwesi Nartey ◽  
Daniel Amoako Darko ◽  
Nasirudeen Sulemana

Bioplant is a liquid soil conditioner that contains a consortium of beneficial fungi and bacteria manufactured by Artemis and Angel Company Limited in Bangkok. Bioplant is purported to stimulate beneficial microbial activity in soil and hence increase crop yield. However, the efficacy of Bioplant has not been evaluated on Ghanaian soils. A screen house trial was consequently conducted to evaluate the efficacy or otherwise of Bioplant on the yield of lettuce in a Rhodic Kandiustalf amended with or without compost. The soil was mixed with compost at 20 parts soil to 80 parts compost and 60 parts soil to 40 parts compost (v/v) and potted in 1.7-L pots. There was another potted soil with no compost amendment. To each of these potted soils, Bioplant was applied at four rates, viz., zero, half the manufacturer's recommended rate, the manufacturer's recommended rate, and twice the manufacturer's recommended rate, and allowed to equilibrate for 2 weeks. Seedlings of lettuce of the variety Eden were transplanted into the pots, and the treatments kept at 80% field capacity. The treatments were replicated four times in a completely randomized design. At physiological maturity, the lettuce was harvested, and fresh and dry matter yields were taken. The C and N contents and N uptake in the harvested plants were also determined. Results indicate that conditioning the soil with Bioplant at half and the manufacturer's recommended rates increased N uptake, resulting in higher carbon accumulation with concomitant increases in both fresh and dry matter yields. The results also show that amending the Rhodic Kandiustalf with Bioplant at twice the manufacturer's rate suppressed yield. Application of Bioplant at the manufacturer's recommended rate in combination with compost amended at 40 parts to 60 parts soil (v/v) saw a 47 and 90% respective significant yield increases in fresh weight and dry matter when only Bioplant was applied at the manufacturer's recommended rate. It is therefore recommended for Bioplant to be applied at the manufacturer's recommended rate of 825 mL/ha in combination with 40 parts of compost to 60 parts of soil (v/v).

2021 ◽  
Vol 914 (1) ◽  
pp. 012055
Author(s):  
T M Hasnah ◽  
E Windyarini ◽  
B Leksono ◽  
K Riyantika ◽  
B H Purwanto ◽  
...  

Abstract The solid waste (dregs seed) of nyamplung (Calophyllum inophyllum) industry from seed pressing processes could be more than 50% of the dry seed weight. Nyamplung oil industry in Bantul (Yogyakarta) has been produced nyamplung oil 4-5 ton/month that produced dregs seed around 50-60%/ton nyamplung dry seeds. The accumulated waste has been piled up and immediately important to utilize it. This study aimed to determine (i) the effect of bioactivators with ameliorant material application and the interactions among treatments on nyamplung dregs compost quality, and (ii) the growth response, seedling quality index and nitrogen uptake on nyamplung seedlings with nyamplung dregs compost application. The study was arranged in Completely Randomized Design (CRD) factorial. Two bioactivators Prouponic Gb#1 and cattle rumen bio starter were used in the study. The bioactivators were combined by ameliorants (no ameliorant, dolomite, and rice husk ash) with 3 replicates for each treatment. Analyses of soil chemical properties were carried out on nyamplung dregs before and after the treatments applied including: pH, DHL, N Total, C/N ratio, P Total, K Total. Those characters were compared to SNI No.19-7030-2004 on compost quality standards. DHL, C/N ratio, the total N, P, and K met the criteria on SNI. Seedling growth characters (height, diameter, number of leaves) and seedling quality index varied between nyamplung dregs compost treatments and control up to 16 weeks observation. Nyamplung dregs compost application showed the highest N uptake on nyamplung seedlings compared to the controls. Nyamplung seedling quality index was highly influenced by the uptake of N nutrients in the shoots and the roots than by height character and diameter.


2003 ◽  
Vol 60 (4) ◽  
pp. 755-759 ◽  
Author(s):  
Suzana Pereira de Melo ◽  
Gaspar Henrique Korndörfer ◽  
Clotilde Maria Korndörfer ◽  
Regina Maria Quintão Lana ◽  
Denise Garcia de Santana

The beneficial effects of silicon (Si) fertilization have been observed for several plant species, especially when submitted to stress, either biotic or abiotic. Among the possible reasons for the greater adaptability and resistance of brachiaria grass in areas of low fertility soils in Brazilian savanna, stands its capacity of absorbing and accumulating Si in aerial parts. To evaluate the effect of Si on dry matter yield of Brachiaria decumbens Stapf and Brachiaria brizantha Hochst, grown under two soil moisture regimes, a trial was set up in a completely randomized design factorial scheme (5 × 2 × 2), with five Si rates: (0; 242; 484; 968 and 1,452 kg ha-1), two soil water tensions (60% and 80% of field capacity) and the two brachiaria species. The experiment was installed in a greenhouse, using one of the most representative soils in the region under cerrado, Typic Haplustox. Both brachiaria species can be considered Si-accumulating plants, since they present high Si contents in their aerial parts. Application of Si to the soil increased the contents of this element in both grass species but did not change their tolerance to water deficit, and did not affect dry matter yield.


2014 ◽  
Vol 63 (2) ◽  
pp. 315-328
Author(s):  
Anita Szabó ◽  
Ádám Csihon ◽  
Andrea Balla-Kovács ◽  
István Gonda ◽  
Imre Vágó

Ökológiai termesztésű almaültetvényben eltérő komposztadagok (0, 10, 25 és 50 kg N·ha−1) hatását vizsgáltuk a talaj tápelemtartalmának változására (0–30 és 30–60 cm-es mélységben). Mértük az egyes almafajták (Golden Delicious és Pinova) levelének szárazanyag- és Ca-tartalmát, továbbá vizsgáltuk e paraméterek alakulásának egymáshoz való viszonyát.A szabadföldi kísérletet a Debreceni Egyetem Kertészettudományi Intézetének Pallagi Kísérleti Telepén, a talaj- és növényminták analízisét az Agrokémiai és Talajtani Intézet laboratóriumaiban végeztük.A 2011. és 2012. évi eredményeket összevetve lényeges csökkenés mutatkozott a talaj AL-oldható P-tartalmában. Az évek múlásával jelentősen nőtt azonban a talajban a nitrát-, ammónia-, szerves-N és CaCl2-Mg tartalom a kijuttatott komposztadagok hatására. Az AL-K, -Ca, -Mg, a CaCl2-P, -K mennyisége és a pH közel azonosnak mondható.Az első kísérleti évben (2010-ben) még nem volt hatása a komposztnak. 2011-ben már észleltünk hatást, de a fagykár miatt nem volt termés a fákon. 2012-ben a nagy termésterhelés mellett is növekedést tapasztaltunk a szárazanyag-tartalom alakulásában mind a Golden Delicious, mind a Pinova fajták esetében. Adott kezeléseken belül az eltérő termésmennyiségekkel, továbbá az évjárattal összefüggő tendenciákat fedeztünk fel. A rendkívül csapadékos évben (2010) alacsony, míg az aszályos évben (2012) nagy szárazanyag-tartalom értékeket mértünk a levélben. A Golden Delicious és a Pinova esetében kapott tendencia fajtától, kezelés- és termesztés-technológiától függetlenül hasonló.A komposzt hatására 2010-ben a Golden Delicious leveleiben kismértékű, a Pinova leveleiben szignifikáns Ca-tartalombeli növekedést mértünk. Az évjárat hatásáról elmondható, hogy csapadékos évben a szakirodalmi adatoknál magasabb, míg száraz, terméshiányos évben alacsonyabb Ca-tartalommal számolhattunk. Bár a Ca-szintek alakulása tendenciájában megegyezett a két almafajta esetében, mégis megállapítható, hogy a Pinova leveleinek elemtartalma nagyobb volt, mint a Golden Delicious fáké.A levelek szárazanyag-tartalma és Ca-tartalma között fordított arányosságot bizonyítottunk.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 523c-523
Author(s):  
Siegfried Zerche

Refined nutrient delivery systems are important for environmentally friendly production of cut flowers in both soil and hydroponic culture. They have to be closely orientated at the actual nutrient demand. To solve current problems, express analysis and nutrient uptake models have been developed in horticulture. However, the necessity of relatively laborious analysis or estimation of model input parameters have prevented their commercial use up to now. For this reason, we studied relationships between easily determinable parameters of plant biomass structure as shoot height, plant density and dry matter production as well as amount of nitrogen removal of hydroponically grown year-round cut chrysanthemums. In four experiments (planting dates 5.11.91; 25.3.92; 4.1.93; 1.7.93) with cultivar `Puma white' and a fixed plant density of 64 m2, shoots were harvested every 14 days from planting until flowering, with dry matter, internal N concentration and shoot height being measured. For each planting date, N uptake (y) was closely (r2 = 0.94; 0.93; 0.84; 0.93, respectively) related to shoot height (x) at the time of cutting and could be characterized by the equation y = a * × b. In the soilless cultivation system, dry matter concentrations of N remained constant over the whole growing period, indicating non-limiting nitrogen supply. In agreement with constant internal N concentrations, N uptake was linearly related (r2 = 0.94 to 0.99) to dry matter accumulation. It is concluded that shoot height is a useful parameter to include in a simple model of N uptake. However, in consideration of fluctuating greenhouse climate conditions needs more sophisticated approaches including processes such as water uptake and photosynthetically active radiation.


2016 ◽  
Vol 24 (1) ◽  
pp. 39-46
Author(s):  
Winarna Winarna ◽  
Iput Pradiko ◽  
Muhdan Syarovy ◽  
Fandi Hidayat

Development of oil palm plantation on peatland was faced with hydrophobicity problem caused by over drained. Hydrophobicity could reduce water retention and nutrient availability in the peat soil. Beside of proper water management application, addition of soil ameliorant which contain iron could increase stability and improve peat soil fertility. The study was conducted to obtain the effect of steel slag on peat soil properties and hydrophobicity. In this study, peat soil was incorporated with steel slag and incubated in 60 days period. The research was employed completely randomized design (CRD) factorial 2 x 2 x 4. First factor is peat maturity consists of two levels: sapric (S) and hemic (H), while the second factor is soil moisture which also consist of two levels: field capacity (W1) and dry (under the critical water content) (W2). The third factor is steel slag dosage which consist of four levels: 0 g pot (TB0), 7.17 g pot (TB1), 14.81 g -1 -1 pot (TB2), and 22.44 g pot (TB3). The result showed that application of steel slag significantly increase of soil pH, ash content, and water retention at pF 4.2. Furthermore, application of steel slag significantly reduce time for water reabsorption (wettability) in sapric. On the other hand, there are negative corellation between water penetration and soil pH, ash content, and water retention at pF 4.2. Overall, application of steel slag could increase wettability and prevent peat soil hydrophobicity.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Peter Asbon Opala

The interactive effects of lime and phosphorus on maize growth in an acid soil were investigated in a greenhouse experiment. A completely randomized design with 12 treatments consisting of four lime levels, 0, 2, 10, and 20 t ha−1, in a factorial combination with three phosphorus rates, 0, 30, and 100 kg ha−1, was used. Maize was grown in pots for six weeks and its heights and dry matter yield were determined and soils were analyzed for available P and exchangeable acidity. Liming significantly reduced the exchangeable acidity in the soils. The effect of lime on available P was not significant but available P increased with increasing P rates. There was a significant effect of lime, P, and P by lime interactions on plant heights and dry matter. Without lime application, dry matter increased with increasing P rates but, with lime, dry mattes increased from 0 to 30 kg P ha−1but declined from 30 to 100 kg P ha−1. The highest dry matter yield (13.8 g pot−1) was obtained with a combined 2 t ha−1of lime with 30 kg P ha−1suggesting that lime application at low rates combined with moderate amounts of P would be appropriate in this soil.


AgriPeat ◽  
2019 ◽  
Vol 18 (02) ◽  
pp. 113-124
Author(s):  
Journal Journal

                                                                                                                                   ABSTRAK Kelapa sawit merupakan tanaman perkebunan yang memegang peranan penting dalam industri pangan. Luas perkebunan kelapa sawit di Indonesia pada tahun 2014 mencapai 10 juta Ha. Pertumbuhan yang pesat diikuti dengan produksi crude palm oil (CPO) dan palm karnel oil (PKO) yang juga meningkat, sekaligus produk sampingan berupa limbah. Salah satu limbah pabrik kelapa sawit yang jumlahnya besar adalah tandan kosong kelapa sawit (TKKS). Tandan kosong kelapa sawit merupakan limbah organik yang berpotensi dimanfaatkan dibidang pertanian. Akan tetapi, TKKS memiliki nilai C/N yang cukup tinggi, akibatnya sukar dan lama untuk terdekomposisi. Salah satu cara pemanfaatan TKKS adalah dengan dilakukan pengomposan dengan pengkayaan urea. Diharapkan dengan perlakuan tersebut TKKS akan cepat terdekomposisi dan dapat segera dimanfaatkan oleh tanaman. Penelitian ini bertujuan untuk (1) mengetahui pengaruh pemberian urea terhadap pengomposan TKKS dan (2) mengetahui pengaruh peningkatan dosis urea terhadap kualitas kompos TKKS. Rancangan yang digunakan dalam penelitian ini adalah Rancangan Acak Lengkap (RAL) faktor tunggal dengan 5 perlakuan, yaitu U1 (urea 0 g setara dengan nilai C/N=), U2 (urea 30,9 g setara dengan nilai C/N=), U3 (urea 79,3 g setara dengan nilai C/N=), U4 (urea 176,1 g setara dengan nilai C/N=) dan U5 (urea 466,3 g setara dengan C/N = ) dan 9 ulangan, sehingga diperoleh 45 satuan percobaan. Hasil penelitian menunjukan bahwa pemberian urea berpengaruh sangat nyata terhadap susut bobot, kadar air, nilai pH kompos, C-organik, N-total, P-tersedia, dan nilai C/N, selain itu pemberian urea mengakibatkan terjadi perubahan tekstur dan warna pada kompos TKKS. Pemberian dosis urea 466,3 g mampu meningkatkan kandungan N-total, serta menurunkan nilai C/N dan nilai pH kompos. Pemberian dosis urea 79,3 g atau setara dengan C/N = mampu meningkatkan kandungan P-tersedia dan kadar air, menurunkan susut bobot dan kandungan C-organik, serta menunjukan perubahan tekstur dan warna yang lebih baik. Kata kunci: tanda kosongkelapa sawit (TKSS), kompos, urea                                                                                                                                        ABSTRACT Empty fruit bunches (EFB) is a solid wastes produced in large quantity from palm oil industry. Empty fruit bunches can be used as compost material, additionally difficult to decompose because it contain cellulose, hemicellulose, and lignin, as well as value of ratio C/N is high. Use EFB as compost material through the provision of urea has been done in this research. Urea are expected to reduce the value of ratio C/N and became a starter for microbial decomposers. The purpose of this research were (1) to determine the effect of urea on composting of EFB and (2) to determine the effect of increasing doses of urea to the quality of compost of EFB. This research was used a single factor of Completely Randomized Design (CRD) with 5 treatments, namely U1 (urea 0 g), U2 (urea 30,9 g), U3 (urea 79,3 g), U4 (urea 176,1 g), and U5 (urea 466,3 g), and 9 replications, until result 45 experimental units. The result showed that urea significant effect on weight loss, water content, value of pH compost, C-organic, N-total, P-available, and value of ratio C/N, besides urea resulted Widodoe, K. dkk Percepatan Pengomposan Tandan Kosong Kelapa Sawit…..…. 114 in a change in texture and color on the compost EFB. Application of urea 466,3 g was able to increase the content of N-total, reduce the value of ratio C/N and the value of pH compost. Application of urea 79,3 g can improve the content of P-available and water content, reduce the weight loss and the content of C-organic, and showed the changes in texture and color as better. Keywords: empty fruit bunches, compost, urea


2021 ◽  
Vol 50 (2) ◽  
pp. 261-267
Author(s):  
Ahmed A Moursy ◽  
MM Ismail

A field experiment was conducted to observe effects of water requirements and different fertilizers on wheat crop’s yield, production and N uptake. Data showed that dry matter yield of wheat grain was higher with Hu + AS (5.82 mt/ha) compared with applied water 100% ETC. Concerning the rate of water regime, the best significant grain yield of wheat was obtained with 100% ETc (4.23 mt/ha). Nitrogen derived from fertilizer Ndff% with 50% ETC of water was 28.41 and 27.28% for grain and straw, respectively. At 100% ETC of water the Ndff% was 30.16 and 27.75% for grain and straw, respectively. Nitrogen utilized by grains and straw was more efficient under treatment Hu + AS combined with 50% Etc, 100% Etc recording 15.6 and 32.23%, respectively. At 50% ETC of water requirements for wheat crop, higher N remained in 0 - 15, 15 - 30 and 30 - 45 cm soil depth were nearly closed to each other compared with the treatment made at 100% ETC of water requirements. Bangladesh J. Bot. 50(2): 261-267, 2021 (June)


Author(s):  
D. T. Q. Carvalho ◽  
A. R. F. Lucena ◽  
T. V. C. Nascimento ◽  
L. M. L. Moura ◽  
P. D. R. Marcelino ◽  
...  

Abstract The objective was to evaluate the fermentation profile, in vitro gas production and nutritional quality of pornunça (Manihot spp.) silages containing levels of condensed tannin (CT; 0, 4, 8 and 12% on dry matter (DM) basis), at five opening times (0, 3, 7, 14, 28 and 56 days). A completely randomized design in a 4 × 5 factorial arrangement was adopted, with four replications, totalling 80 experimental silos. The pH and NH3-N analyses were performed at all opening times of the silos. The other analyses were performed only with silages opened at 56 days of storage. There was an interaction effect between CT levels and silo opening times for pH and NH3-N. Tannin levels in pornunça silages after 56 days ensiling increased the pH and DM and reduced crude protein (CP) and neutral detergent fibre (NDF). There was a quadratic effect for NH3-N, acetic acid, butyric acid, gas losses, dry matter recovery (DMR), hemicellulose and acid detergent fibre. Inclusion of 4 and 8% CT in pornunça silage promotes a rapid decline in pH, being within the acceptable limit for adequate fermentation at 3 days of ensiling. Silages with 4% CT establish the pH at 28 days of opening the silos, with reduced NH3-N. Silages with 4% CT present higher concentrations of acetic and butyric acids and greater DMR. Inclusion of CT in pornunça silage after 56 days ensiling increases DM and reduces CP and NDF, directly affecting the in vitro degradability and reducing gas production.


2017 ◽  
Vol 30 (4) ◽  
pp. 1001-1008
Author(s):  
JOÃO PEDRO ALVES DE AQUINO ◽  
ANTÔNIO AÉCIO DE CARVALHO BEZERRA ◽  
FRANCISCO DE ALCÂNTARA NETO ◽  
CARLOS JOSÉ GONCALVES DE SOUZA LIMA ◽  
RAYLSON RODRIGUES DE SOUSA

ABSTRACT Cowpea is broadly cultivated worldwide, especially in semi-arid or arid regions where soil or irrigation water salt contents can negatively influence the species’ productive capacity. The objective of this study was to evaluate the morphophysiological responses of cowpea genotypes to irrigation water salinity. The experiment was conducted in a greenhouse, under a completely randomized design with nine replications and in a 5x3 factorial scheme. Treatments consisted of five levels of irrigation water electrical conductivity - EC (EC0: 0.55; EC1: 1.60; EC2: 3.20; EC3: 4.80 and EC4: 6.40 dS m-1), applied from the 15th day after sowing (DAS), and three cowpea genotypes (G1: BRS Imponente; G2: MNC04-795F-168 and G3: MNC04-795F-159). EC increases at 35 DAS promoted stem diameter reductions of 8.0% (G1), 11.4% (G2), and 7.7% (G3), indicating different resistance to salinity by each genotype. Leaf area reductions at 25 and 38 DAS were 30.9% and 38.8% for EC0 and EC4, respectively. The BRS Imponente cultivar presented a performance superior to those of G2 and G3 in relation to stem diameter and stem dry matter at 25 DAS, and root-shoot and root-leaf ratios at 38 DAS.


Sign in / Sign up

Export Citation Format

Share Document