scholarly journals Effects of Aleurone Supplementation on Glucose-Insulin Metabolism and Gut Microbiome in Untrained Healthy Horses

2021 ◽  
Vol 8 ◽  
Author(s):  
Berit Boshuizen ◽  
Carmen Vidal Moreno de Vega ◽  
Lorie De Maré ◽  
Constance de Meeûs ◽  
Jean Eduardo de Oliveira ◽  
...  

Aleurone, a layer of the bran fraction, is deemed to be responsible for the positive health effects associated with the consumption of whole-grain products. Studies on rodents, pigs, and humans report beneficial effects of aleurone in five main areas: the reduction of oxidative stress, immunomodulatory effects, modulation of energy management, digestive health, and the storage of vitamins and minerals. Our study is the first aleurone supplementation study performed in horses. The aim of this study was to investigate the effect of an increase in the dose levels of aleurone on the postprandial glucose-insulin metabolism and the gut microbiome in untrained healthy horses. Seven adult Standardbred horses were supplemented with four different dose levels of aleurone (50, 100, 200, and 400 g/day for 1 week) by using a Latin square model with a 1-week wash out in between doses. On day 7 of each supplementation week, postprandial blood glucose-insulin was measured and fecal samples were collected. 16S ribosomal RNA (rRNA) gene sequencing was performed and QIIME2 software was used for microbiome analysis. Microbial community function was assessed by using the predictive metagenome analysis tool Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) and using the Metacyc database of metabolic pathways. The relative abundancies of a pathway were analyzed by using analysis of composition of microbiomes (ANCOM) in R. There was a significant dose-dependent increase in the postprandial time to peak of glucose (p = 0.030), a significant delay in the time to peak of insulin (p = 0.025), and a significant decrease in both the insulin peak level (p = 0.049) and insulin area under the curve (AUC) (p = 0.019) with increasing dose levels of aleurone, with a consideration of 200 g being the lowest significant dose. Alpha diversity and beta diversity of the fecal microbiome showed no significant changes. Aleurone significantly decreased the relative abundance of the genera Roseburia, Shuttleworthia, Anaerostipes, Faecalibacter, and Succinovibrionaceae. The most pronounced changes in the relative abundance at phyla level were seen in Firmicutes and Verrucomicrobia (downregulation) and Bacteroidetes and Spirochaetes (upregulation). The PICRUSt analysis shows that aleurone induces a downregulation of the degradation of L-glutamate and taurine and an upregulation of the three consecutive pathways of the phospholipid membrane synthesis of the Archaea domain. The results of this study suggest a multimodal effect of aleurone on glucose-insulin metabolism, which is most likely to be caused by its effect on feed texture and subsequent digestive processing; and a synergistic effect of individual aleurone components on the glucose-insulin metabolism and microbiome composition and function.

2021 ◽  
Author(s):  
Devin B Holman ◽  
Katherine E Gzyl ◽  
Kathy T Mou ◽  
Heather K Allen

Piglets are often weaned between 19 and 22 d of age in North America although in some swine operations this may occur at 14 d or less. Piglets are abruptly separated from their sow at weaning and are quickly transitioned from sow's milk to a plant-based diet. The effect of weaning age on the long-term development of the pig gut microbiome is largely unknown. In this study, pigs were weaned at either 14, 21, or 28 d of age and fecal samples collected 21 times from d 4 (neonatal) through to marketing at d 140. The fecal microbiome was characterized using 16S rRNA gene and shotgun metagenomic sequencing. The fecal microbiome of all piglets shifted significantly three to seven days post-weaning with an increase in microbial diversity. Several Prevotella spp. increased in relative abundance immediately after weaning as did butyrate-producing species such as Butyricicoccus porcorum, Faecalibacterium prausnitzii, and Megasphaera elsdenii. Within 7 days of weaning, the gut microbiome of pigs weaned at 21 and 28 days of age resembled that of pigs weaned at 14 d. Resistance genes to most antimicrobial classes decreased in relative abundance post-weaning with the exception of those conferring resistance to tetracyclines and macrolides-lincosamides-streptogramin B. The relative abundance of microbial carbohydrate-active enzymes (CAZymes) changed significantly in the post-weaning period with an enrichment of CAZymes involved in degradation of plant-derived polysaccharides. These results demonstrate that pigs tend to have a more similar microbiome as they age and that weaning age has only a temporary effect on the gut microbiome.


2021 ◽  
Vol 11 (4) ◽  
pp. 294
Author(s):  
Irina Grigor’eva ◽  
Tatiana Romanova ◽  
Natalia Naumova ◽  
Tatiana Alikina ◽  
Alexey Kuznetsov ◽  
...  

The last decade saw extensive studies of the human gut microbiome and its relationship to specific diseases, including gallstone disease (GSD). The information about the gut microbiome in GSD-afflicted Russian patients is scarce, despite the increasing GSD incidence worldwide. Although the gut microbiota was described in some GSD cohorts, little is known regarding the gut microbiome before and after cholecystectomy (CCE). By using Illumina MiSeq sequencing of 16S rRNA gene amplicons, we inventoried the fecal bacteriobiome composition and structure in GSD-afflicted females, seeking to reveal associations with age, BMI and some blood biochemistry. Overall, 11 bacterial phyla were identified, containing 916 operational taxonomic units (OTUs). The fecal bacteriobiome was dominated by Firmicutes (66% relative abundance), followed by Bacteroidetes (19%), Actinobacteria (8%) and Proteobacteria (4%) phyla. Most (97%) of the OTUs were minor or rare species with ≤1% relative abundance. Prevotella and Enterocossus were linked to blood bilirubin. Some taxa had differential pre- and post-CCE abundance, despite the very short time (1–3 days) elapsed after CCE. The detailed description of the bacteriobiome in pre-CCE female patients suggests bacterial foci for further research to elucidate the gut microbiota and GSD relationship and has potentially important biological and medical implications regarding gut bacteria involvement in the increased GSD incidence rate in females.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Esteban Góngora ◽  
Kyle H. Elliott ◽  
Lyle Whyte

AbstractThe role of the gut microbiome is increasingly being recognized by health scientists and veterinarians, yet its role in wild animals remains understudied. Variations in the gut microbiome could be the result of differential diets among individuals, such as variation between sexes, across seasons, or across reproductive stages. We evaluated the hypothesis that diet alters the avian gut microbiome using stable isotope analysis (SIA) and 16S rRNA gene sequencing. We present the first description of the thick-billed murre (Uria lomvia) fecal microbiome. The murre microbiome was dominated by bacteria from the genus Catellicoccus, ubiquitous in the guts of many seabirds. Microbiome variation was explained by murre diet in terms of proportion of littoral carbon, trophic position, and sulfur isotopes, especially for the classes Actinobacteria, Bacilli, Bacteroidia, Clostridia, Alphaproteobacteria, and Gammaproteobacteria. We also observed differences in the abundance of bacterial genera such as Catellicoccus and Cetobacterium between sexes and reproductive stages. These results are in accordance with behavioural observations of changes in diet between sexes and across the reproductive season. We concluded that the observed variation in the gut microbiome may be caused by individual prey specialization and may also be reinforced by sexual and reproductive stage differences in diet.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 337-338
Author(s):  
Heather L Acuff ◽  
Tara N Gaire ◽  
Tyler Doerksen ◽  
Andrea Lu ◽  
Michael P Hays ◽  
...  

Abstract This study aimed to evaluate the effect of Bacillus coagulans GBI-30, 6086 on the fecal microbiome of healthy adult dogs. Extruded diets containing graded levels of probiotic applied either to the base ration before extrusion or as a topical coating post-extrusion were randomly assigned to ten individually-housed Beagle dogs (7 castrated males, 3 spayed females) of similar age (5.75 ± 0.23 yr) and body weight (12.3 ± 1.5 kg) in a 5 x 5 replicated Latin square with 16-d adaptation and 5-d total fecal collection for each period. Five dietary treatments were formulated to deliver a dose of 0-, 6-, 7-, 8-, or 9-log10 CFU·dog-1·d-1. Fresh fecal samples (n=50) were analyzed by 16S rRNA gene pyrosequencing. Community diversity was evaluated in R (v4.0.3, R Core Team, 2019). Relative abundance data were analyzed using a mixed model (v9.4, SAS Institute, Inc., Cary, NC) with treatment and period as fixed effects and dog as a random effect. Results were considered significant at P < 0.05. Predominant phyla were Firmicutes (mean 81.2% ± 5), Actinobacteria (mean 9.9% ± 4.4), Bacteroidetes (mean 4.5% ± 1.7), Proteobacteria (mean 1.3% ± 0.7), and Fusobacteria (mean 1.1% ± 0.6). No evidence of shifts in predominant phyla, class, family, or genus taxonomic levels were observed except for the Bacillus genus, which had a greater relative abundance (P = 0.0189) in the low probiotic coating and high probiotic coating treatment groups compared to the extruded probiotic group. Alpha-diversity indices (Richness, Chao1, ACE, Shannon, Simpson, Inverse Simpson, and Fisher) and beta-diversity metrics (principal coordinate analysis and multi-dimensional scaling) were similar for all treatments. This data indicates that supplementation with Bacillus coagulans GBI-30, 6086 at a dose of up to 9 log10 CFU·d-1 did not alter the overall diversity of the fecal microbiome of healthy adult dogs over a 21-d period.


Circulation ◽  
2020 ◽  
Vol 141 (Suppl_1) ◽  
Author(s):  
Dong Wang ◽  
Qibin Qi ◽  
Zheng Wang ◽  
Mykhaylo Usyk ◽  
Daniela Sotres-Alvarez ◽  
...  

Introduction: Little is known about whether the effect of a healthy diet on diabetes mellitus (DM) is modified by the gut microbiome in human. Hypothesis: We hypothesize that the gut microbiome modifies the inverse association between the Mediterranean diet (MedDiet) and risk of DM. Methods: This study included 543 DM cases, 805 with impaired glucose tolerance (IGT) and 394 with normal glucose regulation (NGR) in adults 23-83yrs old from the HCHS/SOL. Fecal samples were profiled using 16s rRNA gene sequencing. We applied QIIME 2 to cluster sequences into OTUs and assign taxonomies, and PICRUSt to predict metagenomic gene functions. Adherence to the MedDiet was evaluated by a MedDiet index using the average of two 24-hr dietary recalls. We applied MaAsLin2 to quantify associations between the MedDiet index and microbial features with adjustment for confounding factors listed in the caption of Fig. 1. Results: MedDiet was associated with phylogenetically diverse, rare, and abundant gut microbes (Fig. 1a). For example, a higher MedDiet index was associated with a higher relative abundance of Faecalibacterium Prausnitzii [FDR-adjusted p (q) =0.002], but a lower relative abundance of Collinsella aerofaciens ( q =0.009). We found that several microbial functions related to plant-derived polysaccharide degradation such as fructuronate reductase ( q =0.02), and short-chain fatty acid fermentation such as butyryl-CoA dehydrogenase ( q =0.002) were enriched in participants with higher MedDiet index. We found that the inverse association between MedDiet and risk of DM was more pronounced in participants with greater abundance of Prevotella copri , but weaker in participants whose gut microbial communities were dominated by Bacteroides ( P interaction =0.02 for IGT/DM vs NGR, Fig. 1b). Conclusions: Adherence to the MedDiet is associated with diverse gut microorganisms and microbial functions. The inverse association between MedDiet and risk of DM might be modified by gut microbiome composition. 1


2019 ◽  
Vol 7 (1) ◽  
pp. e000717 ◽  
Author(s):  
Minchun Zhang ◽  
Rilu Feng ◽  
Mei Yang ◽  
Cheng Qian ◽  
Zheng Wang ◽  
...  

ObjectiveRecent studies have demonstrated that gut microbiota was closely related to metabolic disorders such as type 2 diabetes. Oral antidiabetic medications including metformin, acarbose and sitagliptin lowered blood glucose levels via acting on the gastrointestinal tract. The aim of the study was to observe the comparisons among those medications on gut microbiota composition.Research design and methodsZucker diabetic fatty rats (n=32) were randomly divided into four groups, and had respectively gastric administration of normal saline (control), metformin (215.15 mg/kg/day), acarbose (32.27 mg/kg/day), or sitagliptin (10.76 mg/kg/day) for 4 weeks. Blood glucose levels were measured during an intragastric starch tolerance test after the treatments. 16S rRNA gene sequencing was used to access the microbiota in the fecal samples.ResultsMetformin, acarbose, and sitagliptin monotherapy effectively decreased fasting and postprandial blood glucose levels (p<0.001). Acarbose group displayed specific cluster and enterotype mainly composed byRuminococcus 2whileLactobacilluswas the dominant bacterium in the enterotype of the other three groups. The relative abundance of generaRuminococcus 2andBifidobacteriumwas dramatically higher in acarbose group. Metformin and sitagliptin increased the relative abundance of genus Lactobacillus. Metagenomic prediction showed that the functional profiles of carbohydrate metabolism were enriched in acarbose group.ConclusionsMetformin, acarbose and sitagliptin exerted different effects on the composition of gut microbiota and selectively increased the beneficial bacteria. Supplementation with specific probiotics may further improve the hypoglycemic effects of the antidiabetic drugs.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Sang Gil Lee ◽  
Cao Lei ◽  
Melissa Melough ◽  
Junichi Sakaki ◽  
Kendra Maas ◽  
...  

Abstract Objectives Blackcurrant, an anthocyanin-rich berry, has multiple health benefits. The purpose of this study was to examine the impacts of blackcurrant supplementation and aging on gut bacterial communities in female mice. Methods Three-month and 18-month old female mice were provided standard chow diets with or without anthocyanin-rich blackcurrant extract (BC) (1% w/w) for four months. Upon study completion, fecal samples were collected directly from the animals’ colons. Microbiome DNA was extracted from the fecal samples and the V3-V4 regions of their 16S rRNA gene were amplified and sequenced using Results Taxonomic analysis showed a significantly decrease in alpha diversity in aged female mice, compared to young counterparts. BC consumption did not alter the alpha diversity in either young or aged mice compared to control diets. For beta diversity, we observed the clustering was associated with age but not diet. The phylogenic abundance analysis showed that the relative abundance of several phyla, including Firmicutes, Bacteroidetes, Cyanobacteria, Proteobacteria, and Tenericutes was higher in aged compared to young mice. Among them, the abundance of Firmicutes was downregulated by BC in the young but not the aged mice. The abundance of Bacteroidetes was increased by BC in both the young and the aged groups. Noticeably, Verrucomicrobia was the only phylum whose relative abundance was upregulated in the aged female mice compared to the young mice. Meanwhile, its relative abundance in the aged group was suppressed by BC. Interestingly, Desulfovibrio, which is the most representative sulfate-reducing genus, was detectable only in young female mice, and BC increased its relative abundance. Conclusions Our results characterized the gut microbiome compositions in young and aged female mice, and indicated that the gut microbiome of young and aged female mice responded differently to four month BC administration. Through additional research, the microbial alterations observed in this study should be further investigated to inform our understanding of the effect of BC on the gut microbiome, the possible health benefits related to these changes, and the differing effects of BC supplementation across populations. Funding Sources This study was supported by the USDA NIFA Seed Grant (#2016-67018-24492) and the University of Connecticut Foundation Esperance Funds to Dr. Ock K. Chun. We thank the National Institute on Aging for providing aged mice for the project and Just the Berries Ltd. for providing the blackcurrant extract.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yuan Li ◽  
Sheng-Xiao Zhang ◽  
Xu-Fang Yin ◽  
Ming-Xing Zhang ◽  
Jun Qiao ◽  
...  

Growing experimental and clinical evidence suggests that a chronic inflammatory response induced by gut microbiome critically contribute to the development of rheumatoid arthritis (RA). Previous studies demonstrated the disturbance of lymphocyte subpopulations in RA patients. The purpose of this study was to explore the characteristics of gut microbiome and the associations between bacterium and lymphocyte subpopulations as well as cytokines in patients with RA. Fecal samples from 205 RA patients and 199 healthy controls (HCs) were collected for bacterial DNA extraction and 16S ribosomal RNA (rRNA) gene sequencing. The levels of peripheral lymphocyte subpopulation such as T, B, CD4+T, CD8+T, NK, T helper 1 (Th1), Th2, Th17, and regulatory T cells (Tregs) of these subjects were detected by flow cytometry combined with standard absolute counting beads. The serum levels of cytokines interleukin-2 (IL-2), IL-4, IL-6, IL-10, IL-17, tumour necrosis factor-α (TNF-α), and interferon-γ (INF-γ) were tested by flow cytometric bead array (CBA). Alpha and beta diversity of gut microbiome were explored by bioinformatics analysis. Spearman rank correlation test was used to explore the relationships between gut microbiome and lymphocyte subsets as well as serum cytokines. The diversity and relative abundance of intestinal microbiota in patients with RA were significantly different from those in HCs. Detailly, the abundant of phylum Proteobacteria in RA patients was more than that in HCs, while Firmicutes was less than in HCs. There was increased relative abundance of genus Clostridium_XlVa as well as genus Blautia, more abundance of Ruminococcus2 in patients with lower levels of T, B, CD4+T, and Tregs. In addition, the relative abundances of Pelagibacterium, Oxalobacter, ClostridiumXlVb, and ClostridiumXVIII were correlated with cytokines. Gut microbiome of RA patients was clearly different from that of HCs. Abnormal bacteria communities are associated with the altered levels of lymphocyte subpopulation and cytokines, which might be one of the pathogenesis of RA.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Lijuan Yao ◽  
Xiang Li ◽  
Zutao Zhou ◽  
Deshi Shi ◽  
Zili Li ◽  
...  

The gut microbiota represents a source of genetic and metabolic diversity of a complex polymicrobial ecosystem within its host. To investigate age-based variations of the gut microbiota among Shennongjia golden snub-nosed monkeys (Rhinopithecus roxellana hubeiensis), we characterized the microbial species in fecal samples from 18 Shennongjia golden snub-nosed monkeys evenly pooled into 3 aged groups (Group 1, 1-3 years; Group 2, 5-8 years; Group 3, above 12 years) in Shennongjia, Hubei Province, China. Genomic DNA was extracted from fecal samples, and the 16S rRNA gene V4 region was sequenced using the Illumina high-throughput MiSeq platform PE250. A total of 28 microbial phyla were identified in the gut microbiome of these monkeys with the ten most abundant phyla (i.e., Firmicutes, Bacteroidetes, Verrucomicrobia, Spirochaetes, Tenericutes, Proteobacteria, Planctomycetes, Fibrobacteres, Cyanobacteria, and Euryarchaeota). A total of 1,469 (of 16 phyla and 166 genera), 1,381 (of 16 phyla and 157 genera), and 1,931 (of 19 phyla and 190 genera) operational taxonomic units (OTUs) were revealed in Groups 1, 2, and 3, respectively, with Group 3 containing the most diverse groups of OTUs as revealed by the species relative abundance clustering analysis. These results suggest that the gut microbiota in these monkeys maintain a dynamic status, starting from the early developmental stages of life with the species relative abundance increasing with age. This is the first study to comprehensively characterize the gut microbiota and provide valuable information for monitoring the health and nutritional needs of this endangered primate at different ages.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262317
Author(s):  
Giovana S. Slanzon ◽  
Benjamin J. Ridenhour ◽  
Dale A. Moore ◽  
William M. Sischo ◽  
Lindsay M. Parrish ◽  
...  

Gastrointestinal disease (GI) is the most common illness in pre-weaned dairy calves. Studies have associated the fecal microbiome composition with health status, but it remains unclear how the microbiome changes across different levels of GI disease and breeds. Our objective was to associate the clinical symptoms of GI disease with the fecal microbiome. Fecal samples were collected from calves (n = 167) of different breeds (Holstein, Jersey, Jersey-cross and beef-cross) from 4–21 d of age. Daily clinical evaluations assessed health status. Calves with loose or watery feces were diagnosed with diarrhea and classified as bright-sick (BS) or depressed-sick (DS) according to behavior. Calves with normal or semiformed feces and no clinical illness were classified as healthy (H). One hundred and three fecal samples were obtained from consistently healthy calves and 64 samples were from calves with diarrhea (n = 39 BS; n = 25 DS). The V3-V4 region of 16S rRNA gene was sequenced and analyzed. Differences were identified by a linear-mixed effects model with a negative binomial error. DS and Jersey calves had a higher relative abundance of Streptococcus gallolyticus relative to H Holstein calves. In addition, DS calves had a lower relative abundance of Bifidobacterium longum and an enrichment of Escherichia coli. Species of the genus Lactobacillus, such as an unclassified Lactobacillus, Lactobacillus reuteri, and Lactobacillus salivarius were enriched in calves with GI disease. Moreover, we created a model to predict GI disease based on the fecal microbiome composition. The presence of Eggerthella lenta, Bifidobacterium longum, and Collinsella aerofaciens were associated with a healthy clinical outcome. Although lactobacilli are often associated with beneficial probiotic properties, the presence of E. coli and Lactobacillus species had the highest coefficients positively associated with GI disease prediction. Our results indicate that there are differences in the fecal microbiome of calves associated with GI disease severity and breed specificities.


Sign in / Sign up

Export Citation Format

Share Document