Abstract 18: Gut Microbiome Modifies the Protective Effects of a Mediterranean Dietary Pattern Against Diabetes Mellitus in US Hispanics/ Latinos: The Hispanic Community Health Study/ Study of Latinos (HCHS/SOL)

Circulation ◽  
2020 ◽  
Vol 141 (Suppl_1) ◽  
Author(s):  
Dong Wang ◽  
Qibin Qi ◽  
Zheng Wang ◽  
Mykhaylo Usyk ◽  
Daniela Sotres-Alvarez ◽  
...  

Introduction: Little is known about whether the effect of a healthy diet on diabetes mellitus (DM) is modified by the gut microbiome in human. Hypothesis: We hypothesize that the gut microbiome modifies the inverse association between the Mediterranean diet (MedDiet) and risk of DM. Methods: This study included 543 DM cases, 805 with impaired glucose tolerance (IGT) and 394 with normal glucose regulation (NGR) in adults 23-83yrs old from the HCHS/SOL. Fecal samples were profiled using 16s rRNA gene sequencing. We applied QIIME 2 to cluster sequences into OTUs and assign taxonomies, and PICRUSt to predict metagenomic gene functions. Adherence to the MedDiet was evaluated by a MedDiet index using the average of two 24-hr dietary recalls. We applied MaAsLin2 to quantify associations between the MedDiet index and microbial features with adjustment for confounding factors listed in the caption of Fig. 1. Results: MedDiet was associated with phylogenetically diverse, rare, and abundant gut microbes (Fig. 1a). For example, a higher MedDiet index was associated with a higher relative abundance of Faecalibacterium Prausnitzii [FDR-adjusted p (q) =0.002], but a lower relative abundance of Collinsella aerofaciens ( q =0.009). We found that several microbial functions related to plant-derived polysaccharide degradation such as fructuronate reductase ( q =0.02), and short-chain fatty acid fermentation such as butyryl-CoA dehydrogenase ( q =0.002) were enriched in participants with higher MedDiet index. We found that the inverse association between MedDiet and risk of DM was more pronounced in participants with greater abundance of Prevotella copri , but weaker in participants whose gut microbial communities were dominated by Bacteroides ( P interaction =0.02 for IGT/DM vs NGR, Fig. 1b). Conclusions: Adherence to the MedDiet is associated with diverse gut microorganisms and microbial functions. The inverse association between MedDiet and risk of DM might be modified by gut microbiome composition. 1

Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1874 ◽  
Author(s):  
Angela Horvath ◽  
Marija Durdevic ◽  
Bettina Leber ◽  
Katharina di Vora ◽  
Florian Rainer ◽  
...  

Probiotics have been used in trials to therapeutically modulate the gut microbiome and have shown beneficial effects in cirrhosis. However, their effect on the microbiome of cirrhosis patients is not fully understood yet. Here, we tested the effects of a multispecies probiotic on microbiome composition in compensated cirrhosis. The gut microbiome composition of 58 patients with compensated cirrhosis from a randomized controlled trial who received a daily dose of multispecies probiotics or placebo for six months was analysed by 16S rRNA gene sequencing. Microbiome composition of patients who received probiotics was enriched with probiotic strains and the abundance of Faecalibacterium prausnitzii, Syntrophococcus sucromutans, Bacteroides vulgatus, Alistipes shahii and a Prevotella species was increased in the probiotic group compared to the placebo group. Patients who had microbiome changes in response to probiotic treatment also showed a significant increase in neopterin and a significant decrease in faecal zonulin levels after intervention, which was not observed in placebo-treated patients or patients with unchanged microbiome compositions. In conclusion, multispecies probiotics may enrich the microbiome of compensated cirrhotic patients with probiotic bacteria during a six-month intervention and beneficially change the residential microbiome and gut barrier function.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
O. H. Oduaran ◽  
F. B. Tamburini ◽  
V. Sahibdeen ◽  
R. Brewster ◽  
F. X. Gómez-Olivé ◽  
...  

Abstract Background Comparisons of traditional hunter-gatherers and pre-agricultural communities in Africa with urban and suburban Western North American and European cohorts have clearly shown that diet, lifestyle and environment are associated with gut microbiome composition. Yet, little is known about the gut microbiome composition of most communities in the very diverse African continent. South Africa comprises a richly diverse ethnolinguistic population that is experiencing an ongoing epidemiological transition and concurrent spike in the prevalence of obesity, largely attributed to a shift towards more Westernized diets and increasingly inactive lifestyle practices. To characterize the microbiome of African adults living in more mainstream lifestyle settings and investigate associations between the microbiome and obesity, we conducted a pilot study, designed collaboratively with community leaders, in two South African cohorts representative of urban and transitioning rural populations. As the rate of overweight and obesity is particularly high in women, we collected single time-point stool samples from 170 HIV-negative women (51 at Soweto; 119 at Bushbuckridge), performed 16S rRNA gene sequencing on these samples and compared the data to concurrently collected anthropometric data. Results We found the overall gut microbiome of our cohorts to be reflective of their ongoing epidemiological transition. Specifically, we find that geographical location was more important for sample clustering than lean/obese status and observed a relatively higher abundance of the Melainabacteria, Vampirovibrio, a predatory bacterium, in Bushbuckridge. Also, Prevotella, despite its generally high prevalence in the cohorts, showed an association with obesity. In comparisons with benchmarked datasets representative of non-Western populations, relatively higher abundance values were observed in our dataset for Barnesiella (log2fold change (FC) = 4.5), Alistipes (log2FC = 3.9), Bacteroides (log2FC = 4.2), Parabacteroides (log2FC = 3.1) and Treponema (log2FC = 1.6), with the exception of Prevotella (log2FC = − 4.7). Conclusions Altogether, this work identifies putative microbial features associated with host health in a historically understudied community undergoing an epidemiological transition. Furthermore, we note the crucial role of community engagement to the success of a study in an African setting, the importance of more population-specific studies to inform targeted interventions as well as present a basic foundation for future research.


2020 ◽  
Author(s):  
Min-Ting Lee ◽  
Henry H. Le ◽  
Elizabeth L. Johnson

AbstractFunctions of the gut microbiome have a growing number of implications for host metabolic health, with diet being one of the most significant influences on microbiome composition. Compelling links between diet and the gut microbiome suggest key roles for various macronutrients, including lipids, yet how individual classes of dietary lipids interact with the microbiome remain largely unknown. A class of lipids known as sphingolipids are bioactive components of most foods and are produced by prominent gut microbes. This makes sphingolipids intriguing candidates for shaping diet-microbiome interactions. Here, we use a click-chemistry based approach to track the incorporation of bioorthogonal dietary omega-alkynyl sphinganine (sphinganine alkyne – SAA) into the gut microbial community (Click). Identification of microbe and SAA-specific metabolic products was achieved by fluorescence-based sorting of SAA containing microbes (Sort), 16S rRNA gene sequencing to identify the sphingolipid-interacting microbes (Seq), and comparative metabolomics to identify products of SAA assimilation by the microbiome (Spec). Together this approach, Click-Sort-Seq-Spec (ClickSSS), revealed that SAA-assimilation was nearly exclusively performed by gut Bacteroides, indicating that sphingolipid-producing bacteria play a major role in processing dietary sphinganine. Comparative metabolomics of cecal microbiota from SAA-treated mice showed conversion of SAA to a suite of dihydroceramides, consistent with metabolic activity via Bacteroides and Bifidobacterium. Additionally, other sphingolipid-interacting microbes were identified with a focus on an uncharacterized ability of Bacteroides and Bifidobacterium to metabolize dietary sphingolipids. Therefore, ClickSSS provides a platform to study the flux of virtually any alkyne-labeled metabolite in diet-microbiome interactions.


2020 ◽  
pp. jlr.RA120000950 ◽  
Author(s):  
Min-Ting Lee ◽  
Henry H Le ◽  
Elizabeth L Johnson

Functions of the gut microbiome have a growing number of implications for host metabolic health, with diet being one of the most significant influences on microbiome composition. Compelling links between diet and the gut microbiome suggest key roles for various macronutrients, including lipids, yet how individual classes of dietary lipids interact with the microbiome remains largely unknown. Sphingolipids are bioactive components of most foods and are also produced by prominent gut microbes. This makes sphingolipids intriguing candidates for shaping diet–microbiome interactions. Here, we used a click chemistry–based approach to track the incorporation of bioorthogonal dietary omega-alkynyl sphinganine (sphinganine alkyne [SAA]) into the murine gut microbial community (Bioorthogonal labeling). We identified microbial and SAA-specific metabolic products through fluorescence-based sorting of SAA-containing microbes (Sort), 16S rRNA gene sequencing to identify the sphingolipid-interacting microbes (Seq), and comparative metabolomics to identify products of SAA assimilation by the microbiome (Spec). Together, this approach, termed Bioorthogonal labeling-Sort-Seq-Spec (BOSSS), revealed that SAA assimilation is nearly exclusively performed by gut Bacteroides, indicating that sphingolipid-producing bacteria play a major role in processing dietary sphinganine. Comparative metabolomics of cecal microbiota from SAA-treated mice revealed conversion of SAA to a suite of dihydroceramides, consistent with metabolic activities of Bacteroides and Bifidobacterium. Additionally, other sphingolipid-interacting microbes were identified with a focus on an uncharacterized ability of Bacteroides and Bifidobacterium to metabolize dietary sphingolipids. We conclude that BOSSS provides a platform to study the flux of virtually any alkyne-labeled metabolite in diet–microbiome interactions.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 393-393
Author(s):  
Moamen Elmassry ◽  
Eunhee Chung ◽  
Abdul Hamood ◽  
Chwan-Li Shen

Abstract Objectives In recent years, characterization of gut microbiota composition and function were linked to the progression of type 2 diabetes mellitus. Recent evidence showed that Geranylgeraniol, an isoprenoid found in fruits, vegetables, and grains, improves glucose homeostasis. Similarly, Tocotrienols, a subfamily of vitamin E, also contains anti-diabetic properties. In this study, we examined the combined effect of geranylgeraniol and tocotrienols on the composition and function of gut microbiome in obese male mice. Methods Forty male C57BL/6J mice were assigned to 4 groups in a factorial design as follows: high-fat diet (HFD) (control group), HFD + geranylgeraniol [400 mg/kg diet] (GG group), HFD + tocotrienols [400 mg/kg diet] (TT group), and HFD + geranylgeraniol + tocotrienols (G + T group) for 14 weeks. 16S rRNA gene sequencing was done from cecal samples and microbiome and data analysis was performed with QIIME2 and PICRUSt2. Results Across all groups, the most abundant phyla were Verrucomicrobia, Firmicutes, Bacteroidetes, and Actinobacteria. There was no difference in alpha diversity among different groups. Different treatments influenced the relative abundance of certain bacteria. In the Bacteroidetes phylum, the relative abundance of family S24–7 increased in the TT group only. In the Firmicutes phylum, the relative abundance of family Lachnospiraceae was reduced upon the supplementation of geranylgeraniol or tocotrienols; individually or in combination. In Verrucomicrobia phylum, Akkermansia muciniphila relative abundance was reduced in the TT group but increased in the G + T group. The results of functional profiling of the gut microbiome revealed that geranylgeraniol supplementation caused an increase in the proportion of biosynthetic pathways related to purine, pyrimidine, and inosine-5’-phosphate and hexitol fermentation, and a decrease in the proportion of pathways involved in the biosynthesis of isoleucine, valine, histidine, arginine, and chorismate. The G + T group increased pathways related to thiamine diphosphate biosynthesis, and decreased others involved into sulfur oxidation and methylerythritol phosphate. Conclusions The influence of geranylgeraniol and tocotrienols supplementation on gut microbiome composition and function, suggests a prebiotic potential for the potential of geranylgeraniol and tocotrienols. Funding Sources American River Nutrition, LLC, Hadley, MA.


2021 ◽  
Vol 9 (10) ◽  
pp. 2089
Author(s):  
Shanthi G. Parkar ◽  
Doug I. Rosendale ◽  
Halina M. Stoklosinski ◽  
Carel M. H. Jobsis ◽  
Duncan I. Hedderley ◽  
...  

We examined the prebiotic potential of 32 food ingredients on the developing infant microbiome using an in vitro gastroileal digestion and colonic fermentation model. There were significant changes in the concentrations of short-chain fatty-acid metabolites, confirming the potential of the tested ingredients to stimulate bacterial metabolism. The 16S rRNA gene sequencing for a subset of the ingredients revealed significant increases in the relative abundances of the lactate- and acetate-producing Bifidobacteriaceae, Enterococcaceae, and Lactobacillaceae, and lactate- and acetate-utilizing Prevotellaceae, Lachnospiraceae, and Veillonellaceae. Selective changes in specific bacterial groups were observed. Infant whole-milk powder and an oat flour enhanced Bifidobacteriaceae and lactic acid bacteria. A New Zealand-origin spinach powder enhanced Prevotellaceae and Lachnospiraceae, while fruit and vegetable powders increased a mixed consortium of beneficial gut microbiota. All food ingredients demonstrated a consistent decrease in Clostridium perfringens, with this organism being increased in the carbohydrate-free water control. While further studies are required, this study demonstrates that the selected food ingredients can modulate the infant gut microbiome composition and metabolism in vitro. This approach provides an opportunity to design nutrient-rich complementary foods that fulfil infants’ growth needs and support the maturation of the infant gut microbiome.


Author(s):  
Chin-Hee Song ◽  
Nayoung Kim ◽  
Ryoung Hee Nam ◽  
Soo In Choi ◽  
Jeong Eun Yu ◽  
...  

The frequency of azoxymethane/dextran sulfate sodium (AOM/DSS)-induced carcinogenesis in male mice is higher than that in female mice. Previous studies have reported that 17β-estradiol inhibits tumorigenesis in males by modulating nuclear factor-erythroid 2-related factor 2 (Nrf2). This study aimed to investigate the changes in mouse gut microbiome composition based on sex, AOM/DSS-induced colorectal cancer (CRC), and Nrf2 genotype. The gut microbiome composition was determined by 16S rRNA gene sequencing fecal samples obtained at week 16 post-AOM administration. In terms of sex differences, our results showed that the wild-type (WT) male control mice had higher alpha diversity (i.e. Chao1, Shannon, and Simpson) than the WT female control mice. The linear discriminant analysis effect size (LEfSe) results revealed that the abundances of Akkermansia muciniphila and Lactobacillus murinus were higher in WT male control mice than in WT female controls. In terms of colon tumorigenesis, the alpha diversity of the male CRC group was lower than that of the male controls in both WT and Nrf2 KO, but did not show such changes in females. Furthermore, the abundance of A. muciniphila was higher in male CRC groups than in male controls in both WT and Nrf2 KO. The abundance of Bacteroides vulgatus was higher in WT CRC groups than in WT controls in both males and females. However, the abundance of L. murinus was lower in WT female CRC and Nrf2 KO male CRC groups than in its controls. The abundance of A. muciniphila was not altered by Nrf2 KO. In contrast, the abundances of L. murinus and B. vulgatus were changed differently by Nrf2 KO depending on sex and CRC. Interestingly, L. murinus showed negative correlation with tumor numbers in the whole colon. In addition, B. vulgatus showed positive correlation with inflammatory markers (i.e. myeloperoxidase and IL-1β levels), tumor numbers, and high-grade adenoma, especially, developed mucosal and submucosal invasive adenocarcinoma at the distal part of the colon. In conclusion, Nrf2 differentially alters the gut microbiota composition depending on sex and CRC induction.


Author(s):  
OH. Oduaran ◽  
FB. Tamburini ◽  
V. Sahibdeen ◽  
R. Brewster ◽  
FX. Gómez-Olivé ◽  
...  

AbstractBackgroundComparisons of traditional hunter-gatherers and pre-agricultural communities in Africa with urban and suburban Western North American and European cohorts have clearly shown that diet, lifestyle and environment are associated with gut microbiome composition. Yet, little is known about the gut microbiome composition of most African adults. South Africa comprises a richly diverse ethnolinguistic population that is experiencing an ongoing epidemiological transition and concurrent spike in the prevalence of obesity, largely attributed to a shift towards more Westernized diets and increasingly inactive lifestyle practices. To better characterize the microbiome of African adults living in more mainstream lifestyle settings and to investigate associations between the microbiome and obesity, we conducted a pilot study in two South African cohorts that are representative of urban and rural populations. The study was designed collaboratively with community leaders. As the rate of overweight and obesity is particularly high in women, we collected single time-point stool samples from 170 HIV-negative women (51 at Soweto; 119 at Bushbuckridge), performed 16S rRNA gene sequencing on these samples and compared the data to concurrently collected anthropometric data.ResultsWe found the overall gut microbiome of our cohorts to be reflective of their ongoing epidemiological transition. Specifically, our results show a relatively higher than expected abundance of Western gut-associated taxa such as Barnesiella and the presence of Bifidobacteria and Bacteroides together with the more traditionally non-Western gut-associated Prevotella, Treponema and Succinivibrio. Interestingly, we observed a relatively higher abundance of the Melainabacteria, Vampirovibrio, a predatory bacterium, in the rural cohort. We also found Prevotella, despite its generally high prevalence relative to all taxa present in the cohort, to be associated with obesity.ConclusionsAltogether, this work identifies putative microbial features associated with host health in a historically understudied community. Furthermore, we note the crucial role of community engagement to the success of a study in an African setting, the importance of more population-specific studies to inform targeted interventions as well as present a basic foundation for future research in this regard.


Author(s):  
Dong D Wang ◽  
Qibin Qi ◽  
Zheng Wang ◽  
Mykhaylo Usyk ◽  
Daniela Sotres-Alvarez ◽  
...  

Abstract Context The interrelationships among the gut microbiome, the MedDiet and a clinical endpoint of diabetes is unknown. Objectives To identify gut microbial features of a MedDiet and examine whether the association between MedDiet and diabetes varies across individuals with different gut microbial profiles. Methods This study included 543 diabetes, 805 prediabetes and 394 normoglycemic participants from a cohort study of US Hispanic/Latino men and women. Fecal samples were profiled using 16S rRNA gene sequencing. Adherence to MedDiet was evaluated by an index based on two 24-hour dietary recalls. Results A greater MedDiet adherence was associated with higher abundances of major dietary fiber metabolizers (e.g., Faecalibacterium Prausnitzii, FDR-adjusted p [q] =0.01), and lower abundances of biochemical specialists (e.g., Parabacteroides, q =0.04). The gut microbiomes of participants with greater MedDiet adherence were enriched for functions involved in dietary fiber degradation but depleted for those related to sulfur reduction and lactose and galactose degradation. The associations between MedDiet adherence and diabetes prevalence were significantly stronger among participants with depleted abundance of Prevotella (p  interaction =0.03 for diabetes, 0.02 for prediabetes/diabetes, and 0.02 for prediabetes). A one-standard deviation increment in the MedDiet index was associated with 24% [odds ratio (OR) =0.76; 95% confidence interval (CI), 0.59-0.98] and 7% (OR =0.93; 95% CI, 0.72-1.20) lower odds of diabetes in Prevotella non-carriers and carriers, respectively. Conclusions Adherence to MedDiet is associated with diverse gut microorganisms and microbial functions. The inverse association between the MedDiet and diabetes prevalence varies significantly depending on gut microbial composition.


2012 ◽  
Vol 78 (17) ◽  
pp. 6153-6160 ◽  
Author(s):  
Elizabeth A. Maga ◽  
Prerak T. Desai ◽  
Bart C. Weimer ◽  
Nguyet Dao ◽  
Dietmar Kültz ◽  
...  

ABSTRACTHuman milk contains antimicrobial factors such as lysozyme and lactoferrin that are thought to contribute to the development of an intestinal microbiota beneficial to host health. However, these factors are lacking in the milk of dairy animals. Here we report the establishment of an animal model to allow the dissection of the role of milk components in gut microbiota modulation and subsequent changes in overall and intestinal health. Using milk from transgenic goats expressing human lysozyme at 68%, the level found in human milk and young pigs as feeding subjects, the fecal microbiota was analyzed over time using 16S rRNA gene sequencing and the G2 Phylochip. The two methods yielded similar results, with the G2 Phylochip giving more comprehensive information by detecting more OTUs. Total community populations remained similar within the feeding groups, and community member diversity was changed significantly upon consumption of lysozyme milk. Levels ofFirmicutes(Clostridia) declined whereas those ofBacteroidetesincreased over time in response to the consumption of lysozyme-rich milk. The proportions of these major phyla were significantly different (P< 0.05) from the proportions seen with control-fed animals after 14 days of feeding. Within phyla, the abundance of bacteria associated with gut health (BifidobacteriaceaeandLactobacillaceae) increased and the abundance of those associated with disease (Mycobacteriaceae,Streptococcaceae,Campylobacterales) decreased with consumption of lysozyme milk. This study demonstrated that a single component of the diet with bioactivity changed the gut microbiome composition. Additionally, this model enabled the direct examination of the impact of lysozyme on beneficial microbe enrichment versus detrimental microbe reduction in the gut microbiome community.


Sign in / Sign up

Export Citation Format

Share Document