scholarly journals Early Vigor of a Pyramiding Line Containing Two Quantitative Trait Loci, Phosphorus Uptake 1 (Pup1) and Anaerobic Germination 1 (AG1) in Rice (O. Sativa L.)

Agriculture ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 453
Author(s):  
Na-Hyun Shin ◽  
Jae-Hyuk Han ◽  
Su Jang ◽  
Kihwan Song ◽  
Hee-Jong Koh ◽  
...  

Direct-seeded rice is one of the solutions against the issues of limited labor and time in the rice cropping system. Improved useful traits, such as fertilizer uptake and anaerobic germination, are needed to increase yield and efficiency in the direct seeding system in rice. Pup1 (Phosphorous uptake1) containing PSTOL1 is useful in improving the phosphate uptake under rainfed/upland conditions. OsTPP7 is the major gene of AG1 (Anaerobic Germination), which shows anaerobic germination. IR64-Pup1-AG1 (I-PA) was developed by pyramiding Pup1 and AG1. Around 20% of the chromosomal segments from the donor remained in I-PA. Phenotypic analysis revealed that I-PA showed better phenotypic performance under low and normal P conditions by enhancing the root system and tiller numbers during the early stage. Significantly better P uptake capacity of I-PA was observed upon a P-supplied soil condition. The coleoptile length and germination rate of I-PA showed tolerance under anaerobic-germinated conditions. PSTOL1 and OsTPP7 were independently expressed under different P conditions of soils, as well as anaerobic conditions. The newly developed breeding lines, I-PA, showed early vigor capacity through a high number of tillers, better P uptake, and germination in low-oxygen conditions. It will be a useful and improved breeding line for direct seeding rice breeding programs.

Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ling Su ◽  
Jing Yang ◽  
Dandan Li ◽  
Ziai Peng ◽  
Aoyun Xia ◽  
...  

Abstract Background In Asian rice production, an increasing number of countries now choose the direct seeding mode because of rising costs, labour shortages and water shortages. The ability of rice seeds to undergo anaerobic germination (AG) plays an important role in the success of direct seeding. Results In this study, we used 2,123,725 single nucleotide polymorphism (SNP) markers based on resequencing to conduct a dynamic genome-wide association study (GWAS) of coleoptile length (CL) and coleoptile diameter (CD) in 209 natural rice populations. A total of 26 SNP loci were detected in these two phenotypes, of which 5 overlapped with previously reported loci (S1_ 39674301, S6_ 20797781, S7_ 18722403, S8_ 9946213, S11_ 19165397), and two sites were detected repeatedly at different time points (S3_ 24689629 and S5_ 27918754). We suggest that these 7 loci (−log10 (P) value > 7.3271) are the key sites that affect AG tolerance. To screen the candidate genes more effectively, we sequenced the transcriptome of the flooding-tolerant variety R151 in six key stages, including anaerobic (AN) and the oxygen conversion point (AN-A), and obtained high-quality differential expression profiles. Four reliable candidate genes were identified: Os01g0911700 (OsVP1), Os05g0560900 (OsGA2ox8), Os05g0562200 (OsDi19–1) and Os06g0548200. Then qRT-PCR and LC-MS/ MS targeting metabolite detection technology were used to further verify that the up-regulated expression of these four candidate genes was closely related to AG. Conclusion The four novel candidate genes were associated with gibberellin (GA) and abscisic acid (ABA) regulation and cell wall metabolism under oxygen-deficiency conditions and promoted coleoptile elongation while avoiding adverse effects, allowing the coleoptile to obtain oxygen, escape the low-oxygen environment and germinate rapidly. The results of this study improve our understanding of the genetic basis of AG in rice seeds, which is conducive to the selection of flooding-tolerant varieties suitable for direct seeding.


2011 ◽  
Vol 24 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Shigeru Tanabe ◽  
Naoko Ishii-Minami ◽  
Ken-Ichiro Saitoh ◽  
Yuko Otake ◽  
Hanae Kaku ◽  
...  

The biological role of a secretory catalase of the rice blast fungus Magnaporthe oryzae was studied. The internal amino acid sequences of the partially purified catalase in the culture filtrate enabled us to identify its encoding gene as a catalase-peroxidase gene, CPXB, among four putative genes for catalase or catalase-peroxidase in M. oryzae. Knockout of the gene drastically reduced the level of catalase activity in the culture filtrate and supernatant of conidial suspension (SCS), and increased the sensitivity to exogenously added H2O2 compared with control strains, suggesting that CPXB is the major gene encoding the secretory catalase and confers resistance to H2O2 in hyphae. In the mutant, the rate of appressoria that induced accumulation of H2O2 in epidermal cells of the leaf sheath increased and infection at early stages was delayed; however, the formation of lesions in the leaf blade was not affected compared with the control strain. These phenotypes were complimented by reintroducing the putative coding regions of CPXB driven by a constitutive promoter. These results suggest that CPXB plays a role in fungal defense against H2O2 accumulated in epidermal cells of rice at the early stage of infection but not in pathogenicity of M. oryzae.


2001 ◽  
Vol 44 (11-12) ◽  
pp. 61-67 ◽  
Author(s):  
S-Y. Kim ◽  
P.M. Geary

Two species of macrophytes, Baumea articulata and Schoenoplectus mucronatus, were examined for their capacity to remove phosphorus under nutrient-rich conditions. Forty large bucket systems with the two different species growing in two types of substrate received artificial wastewaters for nine months, simulating a constructed wetland (CW) under high loading conditions. Half of the plants growing in the topsoil and gravel substrates were periodically harvested whereas the other half remained intact. Plant tissue and substrate samples were regularly analysed to determine their phosphorus concentrations. With respect to phosphorus uptake and removal, the Schoenoplectus in the topsoil medium performed better than the Baumea. Biomass harvesting enhanced P uptake in the Schoenoplectus, however the effect was not significant enough to make an improvement on the overall P removal, due to the slow recovery of plants and regrowth of biomass after harvesting. From P partitioning, it was found that the topsoil medium was the major P pool, storing most of total P present in the system. Plant parts contributed only minor storage with approximately half of that P stored below ground in the plant roots. The overall net effect of harvesting plant biomass was to only remove less than 5% of total phosphorus present in the system.


2020 ◽  
Author(s):  
Trung Hieu Mai ◽  
Pieterjan De Bauw ◽  
Andrea Schnepf ◽  
Roel Merckx ◽  
Erik Smolders ◽  
...  

AbstractBackground and aimsUpland rice is often grown where water and phosphorus (P) are limited and these two factors interact on P bioavailability. To better understand this interaction, mechanistic models representing small-scale nutrient gradients and water dynamics in the rhizosphere of full-grown root systems are needed.MethodsRice was grown in large columns using a P-deficient soil at three different P supplies in the topsoil (deficient, suboptimal, non-limiting) in combination with two water regimes (field capacity versus drying periods). Root architectural parameters and P uptake were determined. Using a multiscale model of water and nutrient uptake, in-silico experiments were conducted by mimicking similar P and water treatments. First, 3D root systems were reconstructed by calibrating an architecure model with observed phenological root data, such as nodal root number, lateral types, interbranch distance, root diameters, and root biomass allocation along depth. Secondly, the multiscale model was informed with these 3D root architectures and the actual transpiration rates. Finally, water and P uptake were simulated.Key resultsThe plant P uptake increased over threefold by increasing P and water supply, and drying periods reduced P uptake at high but not at low P supply. Root architecture was significantly affected by the treatments. Without calibration, simulation results adequately predicted P uptake, including the different effects of drying periods on P uptake at different P levels. However, P uptake was underestimated under P deficiency, a process likely related to an underestimated affinity of P uptake transporters in the roots. Both types of laterals (i.e. S- and L-type) are shown to be highly important for both water and P uptake, and the relative contribution of each type depend on both soil P availability and water dynamics. Key drivers in P uptake are growing root tips and the distribution of laterals.ConclusionsThis model-data integration demonstrates how multiple co-occurring single root phene responses to environmental stressors contribute to the development of a more efficient root system. Further model improvements such as the use of Michaelis constants from buffered systems and the inclusion of mycorrhizal infections and exudates are proposed.


2019 ◽  
Vol 52 (1) ◽  
pp. 26-33
Author(s):  
M. Khoshkharam ◽  
W. Sun ◽  
Q. Cheng ◽  
M.H. Shahrajabian

Abstract Allelopathy is the detrimental effect of one crop on germination or development of a plant of another species. A factorial layout within completely randomized design with four replications was used to survey the influence of barley extract on corn seeds. Treatments included plant organs extract (leaf, stem, root and total), and different barley extract densities (Nosrat cultivar) includes four levels of 0%, 25%, 50% and 100%. The influence of barley extract was significant on coleoptile weight, radicle weight, radicle length and coleoptile length. Plant organs had meaningful effect on germination rate, germination percentage, coleoptile weight, radicle weight, radicle length and coleoptile length. Among all experimental characteristics, coleoptiles length was influenced by interaction between barley extract and plant organ. Although, the highest germination rate and germination percentage was related to 25% and 100% of barley extract density, the maximum coleoptile weight, radicle weight, radicle length and coleoptiles length was related to control treatment (0%). Leaf extract has obtained the higher values of germination rate, germination percentage, coleoptile weight, radicle weight, radicle length and coleoptile length. Interaction between control treatment (0% plant extract) and stem extract had obtained the highest coleoptiles weight, radicle weight, radicle length and coleoptile length. Hence, from the obtained results, it can be concluded that the extracts of barley may have allelopathic influence on germination and seedling growth of corn.


2015 ◽  
Vol 72 (7) ◽  
pp. 1147-1154 ◽  
Author(s):  
Pan Yu Wong ◽  
Maneesha P. Ginige ◽  
Anna H. Kaksonen ◽  
Ralf Cord-Ruwisch ◽  
David C. Sutton ◽  
...  

A biofilm process, termed enhanced biological phosphorus removal and recovery (EBPR-r), was recently developed as a post-denitrification approach to facilitate phosphorus (P) recovery from wastewater. Although simultaneous P uptake and denitrification was achieved despite substantial intrusion of dissolved oxygen (DO >6 mg/L), to what extent DO affects the process was unclear. Hence, in this study a series of batch experiments was conducted to assess the activity of the biofilm under various DO concentrations. The biofilm was first allowed to store acetate (as internal storage) under anaerobic conditions, and was then subjected to various conditions for P uptake (DO: 0–8 mg/L; nitrate: 10 mg-N/L; phosphate: 8 mg-P/L). The results suggest that even at a saturating DO concentration (8 mg/L), the biofilm could take up P and denitrify efficiently (0.70 mmol e−/g total solids*h). However, such aerobic denitrification activity was reduced when the biofilm structure was physically disturbed, suggesting that this phenomenon was a consequence of the presence of oxygen gradient across the biofilm. We conclude that when a biofilm system is used, EBPR-r can be effectively operated as a post-denitrification process, even when oxygen intrusion occurs.


1962 ◽  
Vol 42 (2) ◽  
pp. 254-265 ◽  
Author(s):  
J. D. Beaton ◽  
D. W. L. Read ◽  
W. C. Hinman

The effect of phosphate source and soil moisture during the initial soil-fertilizer reaction period on subsequent phosphorus uptake by alfalfa was investigated in a growth chamber. Phosphate-treated soils with moisture adjusted to four different tensions were stored at approximately 18 °C. for 10 weeks. Following this storage interval phosphorus uptake by alfalfa was measured using a short-term technique.Phosphorus content and phosphorus uptake by both tops and roots increased significantly when water-soluble materials such as ammonium polyphosphate, monoammonium and monocalcium phosphate were applied. Less soluble sources, i.e., hydroxyapatite and anhydrous dicalcium phosphate, were much less effective. Calcium metaphosphate produced intermediate results.Moisture content of the soil during the reaction period did not greatly alter subsequent P uptake. The water-soluble sources of phosphorus were affected to the greatest degree.Uptake of P was significantly correlated with the amount of P extracted by NaHCO3 from the treated soils. The highest degree of correlation occurred with ammonium polyphosphate treated soil. A significant negative correlation occurred with calcium metaphosphate. With the exception of the 0.8 bar treatment, moisture tension had little influence on the correlation of P uptake with NaHCO3 extractable-P.


1985 ◽  
Vol 17 (11-12) ◽  
pp. 113-118 ◽  
Author(s):  
R. M. Gersberg ◽  
D. W. Allen

The objective of our study was to show that pure cultures of Klebsiella pneumoniae and Acinetobacter calcoaceticus could be Induced to accumulate large amounts of phosphorus (P), when P-starved cultures were enriched with phosphorus either in suspended growth or immobilized cell reactors. Suspended growth cultures of K. pneumoniae were more efficient than those of A. calcoaceticus, with specific uptake rates of 14.1 - 17.1 mg P1−1 hr−1 per O.D. unit, and 5.4 - 10.0 mg P1−1 hr −1 per O.D. unit, respectively. The absolute rate of P accumulation of 24.6 mg P1−1 hr−1 measured for a K. pneumoniae culture was among the highest ever reported in the literature. In an immobilized cell system, which facilitates the separation of the cells (for recycling) from the liquid phase, K. pneumoniae cells entrapped in agar gel beads, remained viable and showed rates of P uptake of 6.1 and 7.9 mg P1−1 hr−1. K. pneumoniae cultures also showed a high capacity for removing dissolved phosphate from municipal wastewater, with greater than 95% P removal in two hours. These studies suggest the important role such high-phosphate accumulating bacteria may play in wastewater treatment systems designed for enhanced biological phosphorus removal.


2018 ◽  
Vol 46 (2) ◽  
pp. 483-490 ◽  
Author(s):  
Dipali Singh ◽  
Ladislav Nedbal ◽  
Oliver Ebenhöh

Phosphorus (P) is an essential non-renewable nutrient that frequently limits plant growth. It is the foundation of modern agriculture and, to a large extent, demand for P is met from phosphate rock deposits which are limited and becoming increasingly scarce. Adding an extra stroke to this already desolate picture is the fact that a high percentage of P, through agricultural runoff and waste, makes its way into rivers and oceans leading to eutrophication and collapse of ecosystems. Therefore, there is a critical need to practise P recovery from waste and establish a circular economy applicable to P resources. The potential of microalgae to uptake large quantities of P and use of this P enriched algal biomass as biofertiliser has been regarded as a promising way to redirect P from wastewater to the field. This also makes the study of molecular mechanisms underlying P uptake and storage in microalgae of great interest. In the present paper, we review phosphate models, which express the growth rate as a function of intra- and extracellular phosphorus content for better understanding of phosphate uptake and dynamics of phosphate pools.


1980 ◽  
Vol 60 (2) ◽  
pp. 687-693 ◽  
Author(s):  
S. CECCARELLI ◽  
M. T. PEGIATI ◽  
F. SIMEONI

Coleoptile length and culm length in barley (Hordeum sativum Jess.) appeared to be strictly associated in a number of F6 lines derived from a two-way selection experiment for culm length. When the relationship between the two characters was studied in six cultivars and six F2 populations, the degree of association was variable depending upon the parental cultivars. In one F2 population, the two traits were largely independent while in the two F2 populations used in the selection experiment, coleoptile length and culm length were associated, though a small number of plants with new combinations of the two traits were recovered. The presence of a major gene with pleiotropic effect on culm and coleoptile length and closely associated to the genetic system for culm length is suggested to explain the observed results.


Sign in / Sign up

Export Citation Format

Share Document