scholarly journals Thermomagnesium: A By-Product of Ni Ore Mining as a Clean Fertilizer Source for Maize

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 525 ◽  
Author(s):  
João William Bossolani ◽  
Luiz Gustavo Moretti ◽  
José Roberto Portugal ◽  
Ricardo Rossi ◽  
Carlos Alexandre Costa Crusciol

This study explores whether Thermomagnesium (TM), a by-product of Ni ore mining, is an efficient fertilizer for maize. The effects of TM on soil pH, the supply of Si and Mg to the soil and plants, carbohydrate metabolism, grain filling, and yield were assessed in two simultaneous experiments performed in greenhouse conditions. Five TM doses were applied to two soil textures—clayey (0, 55, 273, 709, and 2018 mg kg−1) and sandy (0, 293, 410, 645, and 1260 mg kg−1). In general, the best results in soil and maize plants occurred at the highest TM dose for both soil textures (clayey 2018 mg kg−1 and sandy 1260 mg kg−1). The results demonstrated that in both soils, the concentrations of Mg and Si in the maize leaves increased with the dose of TM, similarly to that which occurred in the soil. Interestingly, in clayey soil, the soil pH increased linearly, whereas in sandy soil, the pH reached its maximum value between the two largest TM doses. The concentration of reducing sugars increased at the highest TM dose, whereas the concentrations of sucrose and starch decreased. The enhancement of carbohydrate partitioning led to higher maize growth, grain filling, and yield. Overall, the results clearly demonstrate that TM is a sustainable alternative fertilizer for maize and can be used for countless other crops and soil classifications, thus providing a suitable destination for this by-product of Ni ore mining.

Author(s):  
Barbara Ludwig Navarro ◽  
Lucia Ramos Romero ◽  
María Belén Kistner ◽  
Juliana Iglesias ◽  
Andreas von Tiedemann

AbstractNorthern corn leaf blight (NCLB) is one of the most important diseases in maize worldwide. It is caused by the fungus Exserohilum turcicum, which exhibits a high genetic variability for virulence, and hence physiological races have been reported. Disease control is based mainly on fungicide application and host resistance. Qualitative resistance has been widely used to control NCLB through the deployment of Ht genes. Known pathogen races are designated according to their virulence to the corresponding Ht gene. Knowledge about of E. turcicum race distribution in maize-producing areas is essential to develop and exploit resistant genotypes. Maize leaves showing distinct elliptical grey-green lesions were collected from maize-producing areas of Argentina and Brazil, and 184 monosporic E. turcicum isolates were obtained. A total of 66 isolates were collected from Argentina during 2015, 2018 and 2019, while 118 isolates from Brazil were collected during 2017, 2018 and 2019. All isolates were screened on maize differential lines containing Ht1, Ht2, Ht3 and Htn1 resistance genes. In greenhouse experiments, inoculated maize plants were evaluated at 14 days after inoculation. Resistance reaction was characterized by chlorosis, and susceptibility was defined by necrosis in the absence of chlorosis. The most frequent race was 0 in both Argentina (83%) and Brazil (65%). Frequencies of race 1 (6% and 24%) and race 23N (5% and 10%) were very low in Argentina and Brazil, respectively. The high frequency of race 0 isolates provides evidence that qualitative resistance based on the tested Ht genes is not being used extensively in Argentina and Brazil to control NCLB. This information may be relevant for growers and breeding programs as the incidence of NCLB is increasing in both countries.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sanjutha Shanmugam ◽  
Sasha N. Jenkins ◽  
Bede S. Mickan ◽  
Noraini Md Jaafar ◽  
Falko Mathes ◽  
...  

AbstractCo-application of biochar and biosolids to soil has potential to mitigate N leaching due to physical and chemical properties of biochar. Changes in N cycling pathways in soil induced by co-application of biological amendments could further mitigate N loss, but this is largely unexplored. The aim of this study was to determine whether co-application of a biochar and a modified biosolids product to three pasture soils differing in texture could alter the relative abundance of N cycling genes in soil sown with subterranean clover. The biosolids product contained lime and clay and increased subterranean clover shoot biomass in parallel with increases in soil pH and soil nitrate. Its co-application with biochar similarly increased plant growth and soil pH with a marked reduction in nitrate in two coarse textured soils but not in a clayey soil. While application of the biosolids product altered in silico predicted N cycling functional genes, there was no additional change when applied to soil in combination with biochar. This supports the conclusion that co-application of the biochar and biosolids product used here has potential to mitigate loss of N in coarse textured soils due to N adsoption by the biochar and independently of microbial N pathways.


2021 ◽  
Vol 1021 ◽  
pp. 181-190
Author(s):  
Lamyaa Najah Snodi ◽  
Anfal Mansur Hameed

Transfer the load from the foundation to the soil causes deformation that soil and surface of the soil near the foundation. Results of the settlement or deformation occurring under the foundation cause destroyed of structure built on it, due to the soil fail. This paper presents a numerical analysis to study the settlement of unusual footing (L-shape) on a two-layered soil using finite element program (ELPLA). Two cases for layered soil were studied, the first case of a layer of sand over the clayey soil, and the second case of clayey soil over the sand soil. The footing (L shape) having different depth from the surface of soil (0, 0.5, 1.0, 1.5, 2.0 and 2.5m) and the loading was (0, 50, 100, 150, 200 and 250 kN/m2) for two cases of layered soil are analyzed. The results for this analysis show that the settlement increase with depth of footing for each load, and when the loading increase the settlement also increase. Curves for load – settlement were almost similar for all depths of footing. Settlements values various between two cases , when sandy soil over clayey soil the settlements was high than when clayey soil over sandy soil.


2001 ◽  
Vol 44 (1) ◽  
pp. 59-62 ◽  
Author(s):  
Luiz Carlos de Oliveira Lima ◽  
Adimilson Bosco Chitarra ◽  
Maria Isabel F. Chitarra

Changes in amylase activity, starch and reducing and non-reducing sugars contents were monitored during ripening of mango fruits (Mangifera indica L.). The climateric raising in mango fruit is marked by an appreciable increase in the activity of amylase, reducing and non-reducing sugars contents and decrease in the starch content. The fruit affected with spongy tissue exhibited much lower amylase activity and reducing and non-reducing sugars, but exhibited much higher starch content during storage at 12 ± 2° C and 90 ± 5% RH for 28 days, when compared to healthy tissue of ‘Tommy Atkins’. Whether this is caused due to adverse effects on certain enzyme activities during ripening is not clearly known. These dates showed that carbohydrate metabolism is an important feature during ripening of mango.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1472
Author(s):  
Brigitta Tóth ◽  
Csaba Juhász ◽  
Maryke Labuschagne ◽  
Makoena Joyce Moloi

The recent study was conducted to examine the influence of acidic soil on the activities of ascorbate (APX) and guaiacol peroxidase (POD), proline, protein as well as malon-dialdehyde (MDA) content, in two commercial spring wheat cultivars (PAN3497 and SST806) at different growth stages (tillering and grain filling). A cultivar effect was significant only for MDA content, while the treatment effect was highly significant for proline, protein, and MDA. The sampling time effect was significant for most characteristics. MDA, antioxidative capacity, as well as protein content increased with maturity. At grain filling, MDA and proline contents were significantly higher at pH 5 than pH 6 and 7 for both cultivars, with the highest content in SST806. Similarly, SST806 had significantly higher APX and POD when growing at pH 5. There were no significant differences in protein content at grain filling between either genotype or treatments affected by low pH. This study showed that growth stage and soil pH influence the rate of lipid peroxidation as well as the antioxidative capacity of wheat, with a larger effect at grain filling, at pH 5. Although SST806 had higher proline, POD, and APX content than PAN3497 at this growth stage, this coincided with a very high MDA content. This shows that the high antioxidative capacity observed here, was not associated with a reduction of lipid peroxidation under low soil pH. Further research should, therefore, be done to establish the role of the induced antioxidant system in association with growth and yield in wheat.


1970 ◽  
Vol 75 (3) ◽  
pp. 571-576 ◽  
Author(s):  
A. Islam ◽  
J. Bolton

Ryegrass was used to remove potassium from two acid soils limed to different pH values. Most non-exchangeable potassium was removed from the unlimed soils (pH 4·5) but differences in removal between pH 5·5 and 7·0 were small. Air-drying the soils after cropping released further potassium into the exchangeable form in amounts independent of soil pH.Equilibrium potassium activity ratios (ARK) after each out declined to small constant values characteristic of the soils. A sandy soil (Woburn) initially contained less exchangeable potassium than a soil with more clay (Sawyers), but after a few crops, ARK, % K in the grass and K uptakes per cut were larger from Woburn soil, showing that non-exchangeable potassium was being released faster than in the other soil.


2018 ◽  
Vol 175 ◽  
pp. 217-225 ◽  
Author(s):  
Guilherme M. Sanches ◽  
Paulo S.G. Magalhães ◽  
Armando Z. Remacre ◽  
Henrique C.J. Franco

1981 ◽  
Vol 96 (1) ◽  
pp. 167-186 ◽  
Author(s):  
D. W. Lawlor ◽  
W. Day ◽  
A. E. Johnston ◽  
B. J. Legg ◽  
K. J. Parkinson

SUMMARYThe effects of water deficit on growth of spring barley were analysed under five irrigation treatments. One crop was irrigated at weekly intervals from emergence throughout the growing season, and one was not irrigated at all after emergence. Soil water deficits in the other treatments were allowed to develop early, intermediate or late in the crop's development.Weekly irrigation produced a crop with a large leaf area index (maximum value 4) and maintained green leaf and awns throughout the grain-filling period. Early drought decreased leaf area index (maximum value 2) by slowing expansion of main-stem leaves and decreasing the number and growth of tiller leaves. Leaf senescence was also increased with drought. Drought late in the development of ears and leaves and during the grain-filling period caused leaves and awns to senesce so that the total photosynthetic areas decreased faster than with irrigation. Photosynthetic rate per unit leaf area was little affected by drought so total dry-matter production was most affected by differences in leaf area.Early drought gave fewer tillers (550/m2) and fewer grains per ear (18) than did irrigation (760 tillers/m2 and 21 grains per ear). Late irrigation after drought increased the number of grains per ear slightly but not the number of ears/m2. Thus at the start of the grain-filling period crops which had suffered drought early had fewer grains than irrigated (9·5 and 18·8 × 103/m2 respectively) or crops which suffered drought later in development (14 × 103/m2).During the first 2 weeks of filling, grains grew at almost the same rate in all treatments. Current assimilate supply was probably insufficient to provide this growth in crops which had suffered drought, and stem reserves were mobilized, as shown by the decrease in stem mass during the period. Grains filled for 8 days longer with irrigation and were heavier (36–38 mg) than without irrigation (29–30 mg). Drought throughout the grainfilling period after irrigation earlier in the season resulted in the smallest grains (29 mg).Grain yield depended on the number of ears, the number of grains per ear and mass per grain. Early drought decreased tillering and tiller ear production and the number of grains that filled in each ear. Late drought affected grain size via the effects on photosynthetic surface area.Drought decreased the concentrations of phosphorus, potassium and magnesium in the dry matter of crops, and irrigation after drought increased them. Concentration of nitrogen was little affected by treatment. Possible mechanisms by which water deficits and nutrient supply affect crop growth and yield are discussed.


Author(s):  
Simone Martini Salvador ◽  
Aline Aparecida Ludvichak ◽  
Dione Richer Momolli ◽  
Kristiana Fiorentin dos Santos ◽  
Catarine Barcellos Consensa ◽  
...  

Intensive management of forest stands can increase biomass production, as well as increase the removal of nutrients from the site. This study therefore sought to simulate different harvest intensities and to calculate the nutrient-use efficiency of Eucalyptus urograndis in different types of soil. The study was carried out in a plantation of seven-year-old hybrid E. urograndis in the city of Telêmaco Borba, Paraná, Brazil. The study site included two sub areas with sandy soil and clayey soil (Cambisols Inceptisol and Ferralsols Oxisols, respectively). Using biomass and nutrients stock data, nutrient removal was simulated under five different harvest scenarios. Nutrient-use efficiency was obtained from the relation between the amount of biomass and nutrients of each tree component. Harvesting the whole tree resulted in the removal of approximately 61% of the nutrients from the site in sandy soil, while in clayey soil 57% of the nutrients were removed. With harvesting of only the commercial stemwood, only 22% of the nutrients were removed from the sandy soil, and 21% from the clayey soil. Stemwood was the component that had the highest nutrient-use efficiency values for all the analyzed nutrients. In conclusion, to achieve nutritional sustainability of E. urograndis stands, the best harvesting system involves the removal of only commercial stemwood. For the production of stemwood, sandy soils have a greater biological efficiency of calcium and magnesium when compared to clayey soil.


Sign in / Sign up

Export Citation Format

Share Document