scholarly journals Expression of AtAAP Gene Family and Endosperm-Specific Expression of AtAAP1 Gene Promotes Amino Acid Absorption in Arabidopsis thaliana and Maize

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1668
Author(s):  
Zhanyu Chen ◽  
Yingying Zhang ◽  
Jiating Zhang ◽  
Bei Fan ◽  
Ying Zhou ◽  
...  

The amino acid permease (AAP) is an important transmembrane protein that is involved in the absorption and transport of amino acids in plants. We investigated the expression patterns of AtAAP genes in Arabidopsis thaliana, based on quantitative real-time PCR. The results revealed differential expression patterns of eight AtAAP genes in different tissues, with five genes (AtAAP1, AtAAP2, AtAAP6, AtAAP7, and AtAAP8) expressed at relatively high levels in both flowers and siliques, suggesting their shared functions in the accumulation of amino acids. In transgenic plants, with endosperm-specific overexpression of AtAAP1, both AtAAP1 and AtAAP6 were up-regulated in both the roots and siliques, while AtAAP2, AtAAP3, AtAAP4, and AtAAP5 showed similar expression levels in the stems and siliques, whereas AtAAP7 and AtAAP8 were expressed at their highest levels in the stems and roots. The results of the amino acid affinity experiments revealed varied absorption capacities for different amino acids, by AtAAP1, and increased acid amino contents in the reproductive organs. These results were verified in transgenic maize plants, with the overexpression of AtAAP1, revealing higher amino acid contents in the reproductive organs than those of the vegetative organs. Our study clearly demonstrated that the endosperm-specific promoter increased the amino acid contents in the reproductive organs and improved the effective utilization of organic nitrogen in plants.

Planta ◽  
2007 ◽  
Vol 226 (4) ◽  
pp. 805-813 ◽  
Author(s):  
Roberto Schmidt ◽  
Harald Stransky ◽  
Wolfgang Koch

2013 ◽  
Vol 26 (1) ◽  
pp. 44-54 ◽  
Author(s):  
Heather H. Marella ◽  
Erik Nielsen ◽  
Daniel P. Schachtman ◽  
Christopher G. Taylor

The root-knot nematode, Meloidogyne incognita, is an obligate parasite which depends entirely on the host plant for its nutrition. Root-knot nematodes induce the formation of a highly specialized feeding site consisting of several giant cells surrounded by a network of vascular tissues. Nutrients, including amino acids and sugars, are transferred apoplastically from the vascular tissues to the feeding site. Using Arabidopsis thaliana lacking the vascular-expressed amino acid permeases (AAP) AAP3 or AAP6, we demonstrate that disruption of amino acid transport can affect nematode parasitism. Nematode infestation levels are significantly reduced on the aap3 and aap6 mutants. AAP3 and AAP6 act distinctly in the transport of amino acids to the feeding site, as demonstrated by differences in their carrying capacity profiles. Furthermore, analyses of promoter: β-glucuronidase lines show different expression patterns for AAP3 and AAP6 in infected roots. In the aap3-3 mutant, part of the decrease in infestation is connected to a defect in early infection, where juveniles enter but then leave the root. Both aap3-3 and aap6-1 produce fewer females and produce more adult male nematodes. Additionally, detrimental effects are observed in the nematodes harvested from aap3-3 and aap6-1 mutants, including decreased egg hatching and infectivity and lower levels of lipid reserves. The transport of amino acids by AAP3 and AAP6 is important for nematode infection and success of the progeny.


2002 ◽  
Vol 184 (15) ◽  
pp. 4071-4080 ◽  
Author(s):  
A. H. F. Hosie ◽  
D. Allaway ◽  
C. S. Galloway ◽  
H. A. Dunsby ◽  
P. S. Poole

ABSTRACT Amino acid uptake by Rhizobium leguminosarum is dominated by two ABC transporters, the general amino acid permease (Aap) and the branched-chain amino acid permease (BraRl). Characterization of the solute specificity of BraRl shows it to be the second general amino acid permease of R. leguminosarum. Although BraRl has high sequence identity to members of the family of hydrophobic amino acid transporters (HAAT), it transports a broad range of solutes, including acidic and basic polar amino acids (l-glutamate, l-arginine, and l-histidine), in addition to neutral amino acids (l-alanine and l-leucine). While amino and carboxyl groups are required for transport, solutes do not have to be α-amino acids. Consistent with this, BraRl is the first ABC transporter to be shown to transport γ-aminobutyric acid (GABA). All previously identified bacterial GABA transporters are secondary carriers of the amino acid-polyamine-organocation (APC) superfamily. Also, transport by BraRl does not appear to be stereospecific as d amino acids cause significant inhibition of uptake of l-glutamate and l-leucine. Unlike all other solutes tested, l-alanine uptake is not dependent on solute binding protein BraCRl. Therefore, a second, unidentified solute binding protein may interact with the BraDEFGRl membrane complex during l-alanine uptake. Overall, the data indicate that BraRl is a general amino acid permease of the HAAT family. Furthermore, BraRl has the broadest solute specificity of any characterized bacterial amino acid transporter.


2017 ◽  
Vol 25 (2) ◽  
pp. 85-90 ◽  
Author(s):  
Anket Sharma ◽  
Vinod Kumar ◽  
Ashwani Kumar Thukral ◽  
Renu Bhardwaj

Abstract Pesticides are applied to protect crops from a variety of insect pests but their application cause toxicity to plants that results, among others, in reduction of protein as well as amino acid contents. The present study is aimed at observing the effect of seed pre-soaking with 24-epibrassinolide (EBL) on the protein and amino acid content in the leaves of Brassica juncea L. grown in soil that is amended with pesticide im-idacloprid (IMI). Soil amendment with IMI resulted in a decrease in the contents in leaves of total proteins and 21 amino acids studied. Seed soaking with 100 nM of EBL resulted in the recovery of total protein as well as amino acid contents in leaves, when compared with plants grown in only IMI amended soils.


2005 ◽  
Vol 11 (1) ◽  
pp. 33-40 ◽  
Author(s):  
L. Bosch ◽  
A. Alegría ◽  
R. Farré

The amino acid profile of 11 samples of tiger nuts ( Cyperus esculentusL.) grown in the area of “L'Horta Nord” in Valencia (Spain) and one sample of African origin were determined, along with the amino acid contents of 10 samples of natural orgeat from Valencia. Protein was hydrolysed by hydrochloric acid at 110 °C for 23 h, and amino acids were derivatised with AQC and determined by RP-HPLC with fluorescence detection. The chromatographic conditions were optimised. The analytical parameters (detection and quantification limits, precision and accuracy) showed the method to be sufficiently sensitive and reproducible for determining amino acids resistant to acid hydrolysis in tiger nuts and orgeat. Arginine was the most abundant amino acid in both tiger nuts and orgeat and the lowest contents corresponding to histidine and tyrosine. The essential amino acid contents of tiger nuts and orgeat protein were greater than those proposed in the protein standard for adults by the FAO/WHO, with the exception of histidine. No significant differences were found among the arginine, lysine and isoleucine amino acid contents in tiger nuts from Valencia, Alboraya and Alm‡ssera; nor were they found among amino acids in tiger nuts from Valencia and Alm‡ssera, with the exception of tyrosine.


2003 ◽  
Vol 14 (12) ◽  
pp. 4835-4845 ◽  
Author(s):  
Sigrid A. Rajasekaran ◽  
Gopalakrishnapillai Anilkumar ◽  
Eri Oshima ◽  
James U. Bowie ◽  
He Liu ◽  
...  

Prostate-specific membrane antigen (PSMA) is a transmembrane protein expressed at high levels in prostate cancer and in tumor-associated neovasculature. In this study, we report that PSMA is internalized via a clathrin-dependent endocytic mechanism and that internalization of PSMA is mediated by the five N-terminal amino acids (MWNLL) present in its cytoplasmic tail. Deletion of the cytoplasmic tail abolished PSMA internalization. Mutagenesis of N-terminal amino acid residues at position 2, 3, or 4 to alanine did not affect internalization of PSMA, whereas mutation of amino acid residues 1 or 5 to alanine strongly inhibited internalization. Using a chimeric protein composed of Tac antigen, the α-chain of interleukin 2-receptor, fused to the first five amino acids of PSMA (Tac-MWNLL), we found that this sequence is sufficient for PSMA internalization. In addition, inclusion of additional alanines into the MWNLL sequence either in the Tac chimera or the full-length PSMA strongly inhibited internalization. From these results, we suggest that a novel MXXXL motif in the cytoplasmic tail mediates PSMA internalization. We also show that dominant negative μ2 of the adaptor protein (AP)-2 complex strongly inhibits the internalization of PSMA, indicating that AP-2 is involved in the internalization of PSMA mediated by the MXXXL motif.


2016 ◽  
Vol 61 (1) ◽  
Author(s):  
Mai Nguyen ◽  
Bernard Fried ◽  
Joseph Sherma

AbstractThe effects of 5, 20, and 40 miracidia dose exposures of Echinostoma caproni on the amino acid contents of Biomphalaria glabrata were studied using high performance thin-layer chromatography-densitometry. Amino acids were identified and quantified in whole bodies of exposed snails and in the uninfected matched controls at 2 and 4 weeks post-exposure. Using cellulose layers with the mobile phase 2-butanol-pyridine-glacial acetic acid-deionized water (39:34:10:26) and ninhydrin detection reagent [2% ninhydrin in acetone-n-butanol (1:1)], five amino acids were identified, i.e., leucine/isoleucine, valine, alanine, glycine, and ornithine, by hRF value comparison and color differentiation. Quantitatively, there was a marked elevation in the amounts of four of these five amino acids (isoleucine/leucine, valine, alanine, and ornithine) across dose levels at 4 weeks post-infection (P<0.05). Elevation of the amino acid content in the high dose snail group suggested that some changes occurred in the amino acid metabolism of the snails in that group as a function of miracidia dose.


2012 ◽  
Vol 108 (S2) ◽  
pp. S59-S68 ◽  
Author(s):  
Shane M. Rutherfurd ◽  
Kiran Bains ◽  
Paul J. Moughan

Cereals and legumes are staple foods in India and are limiting in lysine and sulphur amino acids, respectively. Available lysine loss, due to Maillard-type reactions that may occur during food preparation, exacerbates the problem of lysine deficiency particularly in cereals. Consequently, determining the contents of digestible essential amino acids, particularly lysine, is important. True ileal digestibilities of most amino acids (including total and reactive lysine) were determined for ten food ingredients and eleven foods commonly consumed in India. Semi-synthetic diets each containing either an ingredient or the prepared food as the sole protein source were formulated to contain 100 g kg− 1protein (75 g kg− 1for rice-based diets) and fed to growing rats. Titanium dioxide was included as an indigestible marker. Digesta were collected and the amino acid content (including reactive lysine) of diets and ileal digesta determined. Available (digestible reactive) lysine content ranged from 1·9–15·4 g kg− 1and 1·8–12·7 g kg− 1across the ingredients and prepared foods respectively. True ileal amino acid digestibility varied widely both across ingredients and prepared foods for each amino acid (on average 60–92 %) and across amino acids within each ingredient and prepared food (overall digestibility 31–96 %). Amino acid digestibility was low for many of the ingredients and prepared foods and consequently digestibility must be considered when assessing the protein quality of poorer quality foods. Given commonly encountered daily energy intakes for members of the Indian population, it is estimated that lysine is limiting for adults in many Indian diets.


1997 ◽  
Vol 18 (2) ◽  
pp. 101-112 ◽  
Author(s):  
D W Silversides ◽  
A Houde ◽  
J-F Ethier ◽  
J G Lussier

ABSTRACT The complete coding sequence for the bovine thyrotropin (TSH) receptor was derived using a modified PCR cloning strategy. The bovine thyrotropin receptor conforms to the pattern of receptor interacting with membrane-bound G-protein already established in other species for TSH and gonadotropins receptors. The cDNA for the bovine TSH receptor consists of an open reading frame 2289 nucleotides in length, corresponding to a protein of 763 amino acids (estimated molecular mass of 86·4 kDa) which includes a 20 amino acid putative leading signal peptide. The receptor consists of a large NH2-terminal extracellular membrane domain of 417 amino acids with 5 potential N-linked glycosylation sites, a transmembrane domain (265 amino acids) consisting of 7 putative membrane α-helix spanning segments, and an intracytoplasmic COOH-terminal domain (82 amino acids). The bovine TSH receptor is one amino acid less than the corresponding sequence in dog, human, rat and mouse. Cysteine residues (n=22) were conserved when compared with other TSH receptors. Three potential phosphorylation sites were found in the transmembrane domain and the COOH-terminal domain. As with other members of this receptor family, alternative splicing was observed. A transcribed but truncated TSH receptor of 1769 nucleotides was demonstrated, lacking half of the V segment of the transmembrane domain up to the COOH-terminal domain of the full length TSH receptor. Additionally, alternative transcriptional start sites were observed. Northern blot analysis using a probe (1170 bp) spanning part of the extracellular domain up to the first loop of the transmembrane domain showed specific expression in the bovine thyroid gland with major transcripts of 9·3 and 4·3 kb, and a minor transcript of 3·8 kb being detected.


Sign in / Sign up

Export Citation Format

Share Document