scholarly journals Evaluating Soybean Cultivars for Low- and High-Temperature Tolerance During the Seedling Growth Stage

Agronomy ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 13 ◽  
Author(s):  
Firas Ahmed Alsajri ◽  
Bhupinder Singh ◽  
Chathurika Wijewardana ◽  
J. Trenton Irby ◽  
Wei Gao ◽  
...  

Soybean (Glycine max L.) seedlings may be exposed to low or high temperatures under early or conventional soybean production systems practiced in the US Midsouth. However, a wide range of soybean cultivars commonly grown in the region may inherit diverse tolerance to degrees of temperatures. Therefore, a study was conducted in a controlled-environment facility to quantify 64 soybean cultivars from Maturity Group III to V, to low (LT; 20/12 °C), optimum (OT; 30/22 °C), and high (HT; 40/32 °C) temperature treatments during the seedling growth stage. Several shoot, root, and physiological parameters were assessed at 20 days after sowing. The study found a significant decline in the measured root, shoot, and physiological parameters at both low and high temperatures, except for root average diameter (RAD) and lateral root numbers under LT effects. Under HT, shoot growth was significantly increased, however, root growth showed a significant reduction. Maturity group (MG) III had significantly lower values for the measured root, shoot, and physiological traits across temperature treatments when compared with MG IV and V. Cultivar variability existed and reflected considerably through positive or negative responses in growth to LT and HT. Cumulative stress response indices and principal component analysis were used to identify cultivar-specific tolerance to temperatures. Based on the analysis, cultivars CZ 5225 LL and GS47R216 were identified as most sensitive and tolerant to LT, while, cultivars 45A-46 and 5115LL identified as most tolerant and sensitive to HT, respectively. The information on cultivar-specific tolerance to low or high temperatures obtained in this study would help in cultivar selection to minimize stand loss in present production areas.

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 478A-478
Author(s):  
P. DeCarli ◽  
F. Rivera ◽  
W. Brown ◽  
Mark Gaskell

Coastal California vegetable growers produce a wide range of specialty crops for diverse domestic and export markets. Vegetable-type soybean (Glycine max L.) cultivars are grown and consumed fresh in many parts of the world, but particularly in Japan and Asia, where they are known as edamame. Traditional soybean maturity group classification may not be applicable for fresh-market edamame, particularly in mild coastal California growing conditions. We evaluated a total of 55 vegetable soybean cultivars during the 1998 growing season from maturity groups ranging from group 00 to group VI. Replicated field plots were planted on 30-31 May 1998 in San Luis Obispo, Calif. (lat. 35.12°N.). Cultivars from maturity Groups 00 and I began producing on 4 Sept., followed in 7 to 10 days by maturity Group II and III, and by harvest of maturity Group III and IV cultivars on 19 Sept. Harvest of Group IV cultivars continued until 24 Oct. Percent marketable (two- and three-seeded) pods ranged from 86% to 17% among the cultivars. Marketable yields ranged more than 15-fold, with cultivars such as `Sapporo Midori', a group 00 cultivar popular in Japan, producing 348 g/plant, to cultivars such as `Early Hakucho' and `Envy' producing 20 and 5 g plant, respectively.


2020 ◽  
Author(s):  
Luis Anunciacao ◽  
janet squires ◽  
J. Landeira-Fernandez

One of the main activities in psychometrics is to analyze the internal structure of a test. Multivariate statistical methods, including Exploratory Factor analysis (EFA) and Principal Component Analysis (PCA) are frequently used to do this, but the growth of Network Analysis (NA) places this method as a promising candidate. The results obtained by these methods are of valuable interest, as they not only produce evidence to explore if the test is measuring its intended construct, but also to deal with the substantive theory that motivated the test development. However, these different statistical methods come up with different answers, providing the basis for different analytical and theoretical strategies when one needs to choose a solution. In this study, we took advantage of a large volume of published data (n = 22,331) obtained by the Ages and Stages Questionnaire Social-Emotional (ASQ:SE), and formed a subset of 500 children to present and discuss alternative psychometric solutions to its internal structure, and also to its subjacent theory. The analyses were based on a polychoric matrix, the number of factors to retain followed several well-known rules of thumb, and a wide range of exploratory methods was fitted to the data, including EFA, PCA, and NA. The statistical outcomes were divergent, varying from 1 to 6 domains, allowing a flexible interpretation of the results. We argue that the use of statistical methods in the absence of a well-grounded psychological theory has limited applications, despite its appeal. All data and codes are available at https://osf.io/z6gwv/.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 680
Author(s):  
Thuy T. P. Mai ◽  
Craig M. Hardner ◽  
Mobashwer M. Alam ◽  
Robert J. Henry ◽  
Bruce L. Topp

Macadamia is a recently domesticated Australian native nut crop, and a large proportion of its wild germplasm is unexploited. Aiming to explore the existing diversity, 247 wild accessions from four species and inter-specific hybrids were phenotyped. A wide range of variation was found in growth and nut traits. Broad-sense heritability of traits were moderate (0.43–0.64), which suggested that both genetic and environmental factors are equally important for the variability of the traits. Correlations among the growth traits were significantly positive (0.49–0.76). There were significant positive correlations among the nut traits except for kernel recovery. The association between kernel recovery and shell thickness was highly significant and negative. Principal component analysis of the traits separated representative species groups. Accessions from Macadamia integrifolia Maiden and Betche, M. tetraphylla L.A.S. Johnson, and admixtures were clustered into one group and those of M. ternifolia F. Muell were separated into another group. In both M. integrifolia and M. tetraphylla groups, variation within site was greater than across sites, which suggested that the conservation strategies should concentrate on increased sampling within sites to capture wide genetic diversity. This study provides a background on the utilisation of wild germplasm as a genetic resource to be used in breeding programs and the direction for gene pool conservation.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
John B. Lowe ◽  
Richard T. Baker

Ordered mesoporous silica materials are of interest for a wide range of applications. In many of these, elevated temperatures are used either in the preparation of the material or during its use. Therefore, an understanding of the effect of high temperature treatments on these materials is desirable. In this work, a detailed structural study is performed on silicas with three representative pore structures: a 2-D hexagonal pore arrangement (SBA-15), a continuous 3D cubic bimodal pore structure (KIT-6), and a 3D large cage pore structure (FDU-12). Each silica is studied as prepared and after treatment at a series of temperatures between 300 and 900°C. Pore structures are imaged using Transmission Electron Microscopy. This technique is used in conjunction with Small-Angle X-ray Diffraction, gas physisorption, and29Si solid state Nuclear Magnetic Resonance. Using these techniques, the pore size distributions, the unit cell dimensions of the mesoporous structures, and the relative occupancy of the distinct chemical environments of Si within them are cross correlated for the three silicas and their evolution with treatment temperature is elucidated. The physical and chemical properties before, during, and after collapse of these structures at high temperatures are described as are the differences in behavior between the three silica structures.


2012 ◽  
Vol 3 (1) ◽  
pp. 8 ◽  
Author(s):  
Jianwei Hou ◽  
Guochen Yang ◽  
Lifei Chen ◽  
Chunli Zhao

This project investigated the feasibility of using ground corn stalks as the substrate to cultivate marigold (<em>Tagetes erecta</em> L.). Five treatments including peat moss, composted corn stalks and freshly ground corn stalks were tested for their effects on marigold seedling growth. Seedling quality was described by several morphological and physiological parameters. Data were analyzed using analysis of variance and GGE biplot analysis. There were significant differences among the treatments for several growth parameters, such as seedling biomass, root biomass, stem diameter, leaf area, seedling vigor, chlorophyll content, photosynthetic rate, root activity, stomatal conductance, and intercellular CO2 concentration. Treatment T3, which contained composted ground corn stalks, had the best effect on marigold seedling growth. The results showed that corn stalk was a good substrate for marigold seedlings. GGE biplot demonstrated the substrate effects on marigold seedling quality, and graphically displayed the interrelationships among morphological and physiological parameters. T3 treatment was the best because four morphological parameters, including seedling biomass, roots biomass, stem diameter and seedling vigor, along with six physiological parameters fall into this sector. These results were consistent with the results analyzed by Statistical Analysis Software. For morphological parameters, the correlations are complicated. For physiological parameters, they were all positively correlated between each of two parameters.


2021 ◽  
Author(s):  
Tim Brandes ◽  
Stefano Scarso ◽  
Christian Koch ◽  
Stephan Staudacher

Abstract A numerical experiment of intentionally reduced complexity is used to demonstrate a method to classify flight missions in terms of the operational severity experienced by the engines. In this proof of concept, the general term of severity is limited to the erosion of the core flow compressor blade and vane leading edges. A Monte Carlo simulation of varying operational conditions generates a required database of 10000 flight missions. Each flight is sampled at a rate of 1 Hz. Eleven measurable or synthesizable physical parameters are deemed to be relevant for the problem. They are reduced to seven universal non-dimensional groups which are averaged for each flight. The application of principal component analysis allows a further reduction to three principal components. They are used to run a support-vector machine model in order to classify the flights. A linear kernel function is chosen for the support-vector machine due to its low computation time compared to other functions. The robustness of the classification approach against measurement precision error is evaluated. In addition, a minimum number of flights required for training and a sensible number of severity classes are documented. Furthermore, the importance to train the algorithms on a sufficiently wide range of operations is presented.


2017 ◽  
Vol 17 (4) ◽  
pp. 850-868 ◽  
Author(s):  
William Soo Lon Wah ◽  
Yung-Tsang Chen ◽  
Gethin Wyn Roberts ◽  
Ahmed Elamin

Analyzing changes in vibration properties (e.g. natural frequencies) of structures as a result of damage has been heavily used by researchers for damage detection of civil structures. These changes, however, are not only caused by damage of the structural components, but they are also affected by the varying environmental conditions the structures are faced with, such as the temperature change, which limits the use of most damage detection methods presented in the literature that did not account for these effects. In this article, a damage detection method capable of distinguishing between the effects of damage and of the changing environmental conditions affecting damage sensitivity features is proposed. This method eliminates the need to form the baseline of the undamaged structure using damage sensitivity features obtained from a wide range of environmental conditions, as conventionally has been done, and utilizes features from two extreme and opposite environmental conditions as baselines. To allow near real-time monitoring, subsequent measurements are added one at a time to the baseline to create new data sets. Principal component analysis is then introduced for processing each data set so that patterns can be extracted and damage can be distinguished from environmental effects. The proposed method is tested using a two-dimensional truss structure and validated using measurements from the Z24 Bridge which was monitored for nearly a year, with damage scenarios applied to it near the end of the monitoring period. The results demonstrate the robustness of the proposed method for damage detection under changing environmental conditions. The method also works despite the nonlinear effects produced by environmental conditions on damage sensitivity features. Moreover, since each measurement is allowed to be analyzed one at a time, near real-time monitoring is possible. Damage progression can also be given from the method which makes it advantageous for damage evolution monitoring.


2018 ◽  
Vol 87 (1) ◽  
Author(s):  
J. Rasch ◽  
C. M. Ünal ◽  
A. Klages ◽  
Ü. Karsli ◽  
N. Heinsohn ◽  
...  

ABSTRACTThe gammaproteobacteriumLegionella pneumophilais the causative agent of Legionnaires’ disease, an atypical pneumonia that manifests itself with severe lung damage.L. pneumophila, a common inhabitant of freshwater environments, replicates in free-living amoebae and persists in biofilms in natural and man-made water systems. Its environmental versatility is reflected in its ability to survive and grow within a broad temperature range as well as its capability to colonize and infect a wide range of hosts, including protozoa and humans. Peptidyl-prolyl-cis/trans-isomerases (PPIases) are multifunctional proteins that are mainly involved in protein folding and secretion in bacteria. InL. pneumophilathe surface-associated PPIase Mip was shown to facilitate the establishment of the intracellular infection cycle in its early stages. The cytoplasmic PpiB was shown to promote cold tolerance. Here, we set out to analyze the interrelationship of these two relevant PPIases in the context of environmental fitness and infection. We demonstrate that the PPIases Mip and PpiB are important for surfactant-dependent sliding motility and adaptation to suboptimal temperatures, features that contribute to the environmental fitness ofL. pneumophila. Furthermore, they contribute to infection of the natural hostAcanthamoeba castellaniias well as human macrophages and human explanted lung tissue. These effects were additive in the case of sliding motility or synergistic in the case of temperature tolerance and infection, as assessed by the behavior of the double mutant. Accordingly, we propose that Mip and PpiB are virulence modulators ofL. pneumophilawith compensatory action and pleiotropic effects.


2012 ◽  
Vol 17 (3) ◽  
pp. 184-191 ◽  
Author(s):  
Eui-Cheol Shin ◽  
Chung-Eun Hwang ◽  
Byong-Won Lee ◽  
Hyun-Tae Kim ◽  
Jong-Min Ko ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Vineeta Singh ◽  
Atul Kumar Gupta ◽  
S. P. Singh ◽  
Anil Kumar

Cinnamomum tamalaNees & Eberm. is an important traditional medicinal plant, mentioned in various ancient literatures such as Ayurveda. Several of its medicinal properties have recently been proved. To characterize diversity in terms of metabolite profiles ofCinnamomum tamalaNees and Eberm genotypes, a newly emerging mass spectral ionization technique direct time in real time (DART) is very helpful. The DART ion source has been used to analyze an extremely wide range of phytochemicals present in leaves ofCinnamomum tamala. Ten genotypes were assessed for the presence of different phytochemicals. Phytochemical analysis showed the presence of mainly terpenes and phenols. These constituents vary in the different genotypes ofCinnamomum tamala. Principal component analysis has also been employed to analyze the DART data of theseCinnamomumgenotypes. The result shows that the genotype ofCinnamomum tamalacould be differentiated using DART MS data. The active components present inCinnamomum tamalamay be contributing significantly to high amount of antioxidant property of leaves and, in turn, conditional effects for diabetic patients.


Sign in / Sign up

Export Citation Format

Share Document