scholarly journals Spray-Dried Plasma Improves Body Weight, Intestinal Barrier Function, and Tibia Strength during Experimental Constant Heat Stress Conditions

Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2213
Author(s):  
Jared Ruff ◽  
Thaina L. Barros ◽  
Joy Campbell ◽  
Ricardo González-Esquerra ◽  
Christine N. Vuong ◽  
...  

The aim of this study was to see how spray-dried plasma (SDP) supplementation affected broiler chicken performance, intestinal permeability, and bone strength during persistent heat stress. One-day-old chicks (n = 480) were randomly assigned into twelve environmental corrals; four thermoneutral (TN-negative control, maintained at 24 °C from d 21–42); four heat stress (HS, exposed to 35 °C from d 21–42); and four heat stress treated with 2% SDP in the feed until d 28 followed by 1% SDP until d 42 (HS-SDP). The performance and serum levels of fluorescein isothiocyanate-dextran (FITC-d) were evaluated at d 21, 28, 35, and 42. The tibias strength was evaluated on d 21 and 42. The increment in chicken temperature (p < 0.05) was observed two h following the increase in environmental temperature in both HS groups and was associated with decreased performance parameters compared with the TN group. At d 42 of age, the chickens exposed to HS had an impaired gut permeability and decreased tibia strength compared to the TN group (p < 0.05). However, partially feeding SDP mitigated these adverse effects significantly. These findings imply that using SDP strategically during stressful times, such as prolonged heat stress, may help mitigate its negative consequences.

Animals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 38 ◽  
Author(s):  
Majid Shakeri ◽  
Jeremy James Cottrell ◽  
Stuart Wilkinson ◽  
Weicheng Zhao ◽  
Hieu Huu Le ◽  
...  

In a 2 × 2 factorial design, 60 male Ross-308 broilers were fed either a control or 1 g/kg betaine diet and housed under thermoneutral (TN) or heat stress (HS) conditions. Broilers were acclimated to diets for 1 week under TN (25 °C), then either kept at TN or HS, where the temperature increased 8 h/day at 33 °C and 16 h/day at 25 °C for up to 10 days. Respiration rate (RR) was measured at four time points, and on each of 1, 2, 3, 7 and 10 days of HS, 12 broilers were injected with 0.5 mg/kg of Evans Blue Dye (EBD) solution to quantify regional changes in tissue damage. Betaine was quantified in tissues, and ileal damage was assessed via morphometry and transepithelial resistance (TER). Heat stress elevated RR (p < 0.001) and resulted in reduced villous height (p = 0.009) and TER (p < 0.001), while dietary betaine lowered RR during HS (p < 0.001), increased betaine distribution into tissues, and improved ileal villous height (p < 0.001) and TER (p = 0.006). Heat stress increased EBD in the muscle and kidney of chickens fed the control diet but not in those receiving betaine. Overall, these data indicate that supplemented betaine is distributed to vital organs and the gastrointestinal tract, where it is associated with improved tolerance of HS. Furthermore, EBD markers help reveal the effects of HS on organs dysfunction.


Pharmacology ◽  
2019 ◽  
Vol 105 (1-2) ◽  
pp. 102-108 ◽  
Author(s):  
Norio Nishii ◽  
Tadayuki Oshima ◽  
Min Li ◽  
Hirotsugu Eda ◽  
Kumiko Nakamura ◽  
...  

Introduction: Lubiprostone, a chloride channel activator, is said to reduce epithelial permeability. However, whether lubiprostone has a direct effect on the epithelial barrier function and how it modulates the intestinal barrier function remain unknown. Therefore, the effects of lubiprostone on intestinal barrier function were evaluated in vitro. Methods: Caco-2 cells were used to assess the intestinal barrier function. To examine the expression of claudins, immunoblotting was performed with specific antibodies. The effects of lubiprostone on cytokines (IFNγ, IL-6, and IL-1β) and aspirin-induced epithelial barrier disruption were assessed by transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC) labeled-dextran permeability. Results: IFNγ, IL-6, IL-1β, and aspirin significantly decreased TEER and increased epithelial permeability. Lubiprostone significantly improved the IFNγ-induced decrease in TEER in a dose-dependent manner. Lubiprostone significantly reduced the IFNγ-induced increase in FITC labeled-dextran permeability. The changes induced by IL-6, IL-1β, and aspirin were not affected by lubiprostone. The expression of claudin-1, but not claudin-3, claudin-4, occludin, and ZO-1 was significantly increased by lubiprostone. Conclusion: Lubiprostone significantly improved the IFNγ-induced decrease in TEER and increase in FITC labeled-dextran permeability. Lubiprostone increased the expression of claudin-1, and this increase may be related to the effect of lubiprostone on the epithelial barrier function.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 496-497
Author(s):  
Nathan L Horn ◽  
Adrienne Woodward ◽  
Kola Ajuwon ◽  
Layi Adeola

Abstract Social and environmental stressors impact nursery pig performance and may be linked to gastrointestinal dysfunction. The current experiment was conducted to investigate the impact of feed and water deprivation on serum stress markers and ileal mucosal gene expression in nursery pigs. Mixed-sex pigs were allotted on the basis of IBW (7.0 kg ± 0.89) in a RCBD with treatments in a split-plot arrangement and consisting of the whole-plot factor of with or without a 24-h feed and water deprivation at weaning and the sub-plot factor of with or without a cyclic 3-d heat stress starting 27 d post-weaning. On 1, 27, and 30 d post-weaning one pig from each pen was selected, blood was collected for measurement of serum cortisol, corticotrophin releasing factor (CRF), and endotoxins, and an ileal mucosal scraping was taken and gene expression of claudin 1 (CL-1), occludin (OC), and zonula occludens 1 (ZO-1) were measured by RT PCR. There was an increase (P &lt; 0.05) in serum CRF and endotoxins and a tendency for an increase (P = 0.09) in serum cortisol due to the deprivation 1 d post-weaning. Further, there was a tendency for an increase (P &lt; 0.10) in serum endotoxins and CRF due to the deprivation at 27 and 30 d post-weaning, respectively. Gene expression of CL-1 tended to increase (P = 0.10), and OC decreased (P = 0.05) due to the deprivation 1 d post-weaning. Expression of the OC gene decreased (P &lt; 0.05) due to the deprivation 27 d post-weaning and OC and ZO-1 gene expression tended to decrease (P = 0.07) due to the heat stress 30 d post-weaning. These results show that post-weaning stress events alter serum stress markers and impact intestinal barrier function.


Animals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 107 ◽  
Author(s):  
Doyun Goo ◽  
Jong Hyuk Kim ◽  
Geun Hyeon Park ◽  
Jomari Badillo Delos Reyes ◽  
Dong Yong Kil

The present experiment was conducted to investigate the effect of heat stress (HS) andstocking density (SD) on growth performance, breast meat quality, and intestinal barrier functionin broiler chickens. Experimental treatments included two different ambient temperatures (20 °C:thermoneutral conditions, or 27.8 °C: HS conditions) and two different SD (low: 9 birds/m2 andhigh: 18 birds/m2) in a 2 × 2 factorial arrangement. A total of 1140 21-day-old broiler chickens wereallotted 1 of 4 treatments with five replicates. At the end of the experiment (35 days of age), twobirds per replicate were euthanized for sample collections. The results indicated no interactionsbetween HS and SD for all measurements. For main effects, HS decreased (p < 0.05) the growthperformance of broiler chickens. Similarly, high SD also decreased (p < 0.05) body weight gain andfeed intake. HS decreased (p < 0.01) jejunal trans-epithelial electric resistance (TER), whereas highSD did not affect TER. Neither HS nor high SD affected jejunal tight junction-related geneexpressions; however, high SD reduced (p < 0.05) occludin expression. In conclusion, HS and highSD are key environmental factors decreasing broiler performance; however, the interactive effectsof HS and high SD are not significant under the current conditions.


2016 ◽  
Vol 16 (2) ◽  
pp. 292-300 ◽  
Author(s):  
Panwang Zhang ◽  
Tao Yan ◽  
Xiliang Wang ◽  
Shichang Kuang ◽  
Yuncai Xiao ◽  
...  

Toxins ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 184
Author(s):  
Yanan Gao ◽  
Xiaoyu Bao ◽  
Lu Meng ◽  
Huimin Liu ◽  
Jiaqi Wang ◽  
...  

With the growing diversity and complexity of diet, humans are at risk of simultaneous exposure to aflatoxin B1 (AFB1) and aflatoxin M1 (AFM1), which are well-known contaminants in dairy and other agricultural products worldwide. The intestine represents the first barrier against external contaminants; however, evidence about the combined effect of AFB1 and AFM1 on intestinal integrity is lacking. In vivo, the serum biochemical parameters related to intestinal barrier function, ratio of villus height/crypt depth, and distribution pattern of claudin-1 and zonula occluden-1 were significantly affected in mice exposed to 0.3 mg/kg b.w. AFB1 and 3.0 mg/kg b.w. AFM1. In vitro results on differentiated Caco-2 cells showed that individual and combined AFB1 (0.5 and 4 μg/mL) and AFM1 (0.5 and 4 μg/mL) decreased cell viability and trans-epithelial electrical resistance values as well as increased paracellular permeability of fluorescein isothiocyanate-dextran in a dose-dependent manner. Furthermore, AFM1 aggravated AFB1-induced compromised intestinal barrier, as demonstrated by the down-regulation of tight junction proteins and their redistribution, particularly internalization. Adding the inhibitor chlorpromazine illustrated that clathrin-mediated endocytosis partially contributed to the compromised intestinal integrity. Synergistic and additive effects were the predominant interactions, suggesting that these toxins are likely to have negative effects on human health.


2021 ◽  
Vol 8 ◽  
Author(s):  
Dingfa Wang ◽  
Luli Zhou ◽  
Hanlin Zhou ◽  
Guanyu Hou

The effects of dietary supplementation with guava leaf extracts (GE) on intestinal barrier function and serum and fecal metabolome in weaned piglets challenged by enterotoxigenic Escherichia coli (ETEC) were investigated. In total, 50 weaned piglets (Duroc × Yorkshire × Landrace) from 25 pens (two piglets per pen) were randomly divided into five groups: BC (blank control), NC (negative control), S50 (supplemented with 50 mg kg−1 diet GE), S100 (100 mg kg−1 diet GE), and S200 (200 mg kg−1 diet GE), respectively. On day 4, all groups (except BC) were orally challenged with enterotoxigenic ETEC at a dose of 1.0 × 109 colony-forming units (CFUs). After treatment for 28 days, intestinal barrier function and parallel serum and fecal metabolomics analysis were carried out. Results suggested that dietary supplementation with GE (50–200 mg kg−1) increased protein expression of intestinal tight junction proteins (ZO-1, occludin, claudin-1) (p &lt; 0.05) and Na+/H+ exchanger 3 (NHE3) (p &lt; 0.05). Moreover, dietary supplementation with GE (50–200 mg kg−1) increased the level of tetrahydrofolic acid (THF) and reversed the higher level of nicotinamide-adenine dinucleotide phosphate (NADP) induced by ETEC in serum compared with the NC group (p &lt; 0.05), and enhanced the antioxidant capacity of piglets. In addition, dietary addition with GE (100 mg kg−1) reversed the lower level of L-pipecolic acid induced by ETEC in feces compared with the NC group (p &lt; 0.05) and decreased the oxidative stress of piglets. Collectively, dietary supplementation with GE exhibited a positive effect on improving intestinal barrier function. It can reprogram energy metabolism through similar or dissimilar metabolic pathways and finally enhance the antioxidant ability of piglets challenged by ETEC.


2020 ◽  
Vol 33 (7) ◽  
pp. 1156-1166
Author(s):  
Junna He ◽  
Lianxiang Ma ◽  
Jialing Qiu ◽  
Xintao Lu ◽  
Chuanchuan Hou ◽  
...  

Objective: The aim of this study was to evaluate the effects of compound organic acid calcium (COAC) on growth performance, hepatic antioxidant status and intestinal barrier of male broilers under high ambient temperature (32.7°C).Methods: Nine hundred healthy one-d-old Cobb-500 male broiler chicks were randomly assigned into three groups with six replicates of 50 birds each. A basal diet supplemented with 0% (control), 0.4% and 0.8% COAC, respectively were fed to birds for 6 weeks. All treatments were under high ambient indoor temperature of 32.7°C, and had a constant calcium and available phosphorus ratio.Results: The results showed that, compared with control, the average daily gain of broilers in 0.4% and 0.8% was significantly increased and the ratio of feed to gain in in 0.4% and 0.8% was significantly decreased at 1 to 21, 22 to 42 and 1 to 42 days of age (p<0.05). Compared with control, 0.8% COAC slightly decreased (p = 0.093) the content of malondialdehyde in liver at 42 days of age while 0.4% COAC significantly decreased (p<0.05) the activity of alkaline phosphatase. Furthermore, 0.4% COAC significantly enhanced the intestinal barrier function via increasing jejunal and ileal ocln transcription, promoting jejunal mucin 2 transcription at 42 days of age (p<0.05), and decreasing jejunal toll-like receptor 2 (TLR-2) and ileal TLR-15, inducible nitric oxide synthase compared with control group (p<0.05). Whereas, no significant differences on the transcription of interleukin-1β in jejunum and ileum were observed among three treatments (p>0.05). Overall, heat stress caused by high natural environment temperature may induce the damage to hepatic antioxidation and intestinal barrier.Conclusion: Dietary inclusion of COAC can improve the tolerance of broilers to thermal environment through the modification of antioxidative parameters in liver and the mRNA expression of genes in intestinal barrier, resulting in an optimal inclusion level of 0.4%.


2018 ◽  
Vol 119 (9) ◽  
pp. 992-1002 ◽  
Author(s):  
Ester Arévalo Sureda ◽  
Olena Prykhodko ◽  
Björn Weström

AbstractGut maturation naturally accelerates at weaning in altricial mammalian species, such as the rat. Mimicking this, gut development can also be induced precociously, 3–4 d earlier than it would occur naturally, by enteral exposure to phytohaemagglutinin (PHA), or various proteases. We investigated the early effects of gut provocation on intestinal barrier and pancreatic functions, to get a better understanding of the mechanisms that initiate gut maturation. The effects of oral administration of protease (trypsin) or PHA to 14-d-old suckling rats were studied during 24 h in comparison with water-fed controls. Intestinal in vivo permeability was assessed by oral administration of different-sized marker molecules and measuring their passage into the blood or urine 3 h later. A period of 24 h following oral administration, both PHA and protease provocation stimulated small intestinal (SI) growth and pancreatic secretion, as indicated by decreased pancreatic trypsin and increased luminal enzyme content. Within 1 h of oral administration, both treatments prevented the absorption of macromolecules to blood that was observed in controls. PHA treatment hindered the passage of fluorescein isothiocyanate-dextran (FD) 4 to blood, whereas protease treatment temporarily increased plasma levels of FD4, and the urine lactulose:mannitol ratio, indicating increased intestinal leakiness. Following protease treatment, fluorescence microscopy showed decreased vesicular uptake of FD70 in the proximal SI and increased epithelial fluorescence in the distal SI. In conclusion, PHA and protease differed in their early effects on the intestinal barrier; both exerted a blocking effect on epithelial endocytosis, whereas protease treatment alone temporarily increased epithelial leakiness, which seemed to be confined to the distal SI.


2019 ◽  
Vol 116 (21) ◽  
pp. 10333-10338 ◽  
Author(s):  
Franziska Koch ◽  
Ulrike Thom ◽  
Elke Albrecht ◽  
Rosemarie Weikard ◽  
Wietje Nolte ◽  
...  

High ambient temperature has multiple potential effects on the organism such as hyperthermia, endotoxemia, and/or systemic inflammation. However, it is often difficult to discriminate between cause and consequence of phenotypic effects, such as the indirect influence of heat stress via reduced food intake. Lactating dairy cows are a particularly sensitive model to examine the effects of heat stress due to their intensive metabolic heat production and small surface:volume ratio. Results from this model show heat stress directly induced a so-far unknown infiltration of yet uncategorized cells into the mucosa and submucosa of the jejunum. Due to a pair-feeding design, we can exclude this effect being a consequence of the concurrent heat-induced reduction in feed intake. Isolation and characterization of the infiltrating cells using laser capture microdissection and RNA sequencing indicated a myeloic origin and macrophage-like phenotype. Furthermore, targeted transcriptome analyses provided evidence of activated immune- and phagocytosis-related pathways with LPS and cytokines as upstream regulators directly associated with heat stress. Finally, we obtained indication that heat stress may directly alter jejunal tight junction proteins suggesting an impaired intestinal barrier. The penetration of toxic and bacterial compounds during heat stress may have triggered a modulated immune repertoire and induced an antioxidative defense mechanism to maintain homeostasis between commensal bacteria and the jejunal immune system. Our bovine model indicates direct effects of heat stress on the jejunum of mammals already at moderately elevated ambient temperature. These results need to be considered when developing concepts to combat the negative consequences of heat stress.


Sign in / Sign up

Export Citation Format

Share Document