scholarly journals Origanum vulgare Essential Oil vs. a Commercial Mixture of Essential Oils: In Vitro Effectiveness on Salmonella spp. from Poultry and Swine Intensive Livestock

Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 763
Author(s):  
Maura Di Vito ◽  
Margherita Cacaci ◽  
Lorenzo Barbanti ◽  
Cecilia Martini ◽  
Maurizio Sanguinetti ◽  
...  

Salmonella spp. represent a public health concern for humans and animals due to the increase of antibiotic resistances. In this scenario, the use of essential oils (EOs) could be a valid tool against Salmonella contamination of meat. This work compares the in vitro effectiveness of an Italian mixture of feed additives based on EOs (GR-OLI) with EO of Origanum vulgare L., recently admitted by European Food Safety Authority (EFSA) for animal use. Twenty-nine Salmonella serotypes isolated from poultry and pig farms were used to assess GR-OLI and O. vulgare EO antimicrobial propeties. O. vulgare EO was active on the disaggregation of mature biofilm, while GR-OLI was capable of inhibiting biofilm formation and disaggregating preformed biofilm. Furthermore, GR-OLI inhibited bacterial adhesion to Caco-2 cells in a dose-dependent manner. Both products showed inhibition of bacterial growth at all time points tested. Finally, the synergistic action of GR-OLI with commonly used antibiotics against resistant strains was investigated. In conclusion, the mixture could be used both to reduce the meat contamination of Salmonella spp. before slaughter, and in synergy with low doses of ciprofloxacin against resistant strains. Although EOs as feed additives are already used in animal husbandry, no scientific study has ever highlighted their real antimicrobial potential.

Author(s):  
Na Yao ◽  
Qiong Xu ◽  
Jia-Kang He ◽  
Ming Pan ◽  
Zhao-Feng Hou ◽  
...  

Toxoplasma gondii is a serious hazard to public health and animal husbandry. Due to the current dilemma of treatment of toxoplasmosis, it is urgent to find new anti-T. gondii drugs to treat toxoplasmosis. In this study, the anti-T. gondii activity of Origanum vulgare essential oil (Ov EO) was firstly studied, and then, carvanol (Ca), the main ingredient of Ov EO was evaluated using the MTT assay on human foreskin fibroblast (HFF) cells in vitro. The cytotoxicity was evaluated using the MTT assay on HFF cells. The CC50 of Ov EO and Ca was 134.9 and 43.93 μg/ml, respectively. Both of them exhibited anti-parasitic activity, and inhibited the growth of T. gondii in a dose-dependent manner. For the inhibition effect, Ca was better than Ov EO at the same concentration, the IC50 of Ov EO and Ca was 16.08 and 7.688 μg/ml, respectively. In addition, treatment with Ca, was found to change the morphology of T. gondii tachyzoites and made their shapes curl up. These results showed that Ca was able to inhibit the proliferation of T. gondii by reducing invasion, which may be due to its detrimental effect on the mobility of tachyzoites. Our results indicated that Ca could be a potential new and effective drug for treating toxoplasmosis.


2021 ◽  
Author(s):  
Aurele Gnetegha Ayemele ◽  
Lu Ma ◽  
Xiumei Li ◽  
Peilong Yang ◽  
Jianchu Xu ◽  
...  

Abstract Rumen protozoa have a little contribution to the feed digestibility but Entodinium, the most predominant genus, is unfortunately culprit of the nitrogen utilization inefficiency. To bridge the gap, antibiotics have been used to inhibit the rumen protozoa but unfortunately, due to the health concern, this could not be really applied at the farm level, especially in the organic farms where the use of natural plants is an utmost priority. Therefore, our study aimed at investigating the nutritional and functional properties of six forest plants for their potential as feed additives in animal husbandry. The plants were analyzed for major phytochemicals using reversed phase-HPLC analysis and then evaluated for their in-vitro suppressing effect on rumen protozoa, ammoniagenesis, and microbial α-glucosidase activity. For each plant, four doses (0, 0.7, 0.9, and 1.1 mg/mL culture fluid) displayed in a complete randomized design were used. Quercetin, anthraquinone, 3-hydroxybenzoic acid, astragaloside, and myricetin were found to different extent (P ≤ 0.05) in the plant leaves. All the tested plants reduced total rumen protozoa counts but C. gigantea and B. rapa had the most inhibitory effect (P ≤ 0.05), inhibiting the rumen protozoa by 45.6 and 65.7%, respectively, at the dose of 1.1 mg/mL. Moreover, the scanning electron microscopy revealed the mechanistic disruption of the extracellular membrane of the protozoa, indicating their metabolic death pathway. Only C. gigantea inhibited the rumen protozoa in a proportion that also led to the reduction of the wasteful ammonia production (P ≤ 0.05). Besides, A. digitata and F. macrophylla have the higher inhibition rate (70%) of the microbial α-glucosidase activity at 100 µg/mL of crude extract. Overall, the plants showed promising results as functional feed additives although future research on bio-guided fractionation is needed to accurately identify the pure anti-protozoal bioactive compound(s).


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


Author(s):  
Gerardo Jiménez-Penago ◽  
Roberto González-Garduño ◽  
Luciano Martínez-Bolaños ◽  
Ema Maldonado-Siman ◽  
Alvar A. Cruz-Tamayo ◽  
...  

2019 ◽  
Vol 6 (2) ◽  
pp. 181
Author(s):  
Laila Nur Rohma ◽  
Laila Nur Rohma ◽  
Osfar Sjofjan ◽  
M. Halim Natsir

ABSTRAK                                                                        Imbuhan pakan unggas dapat berasal dari bahan herbal yang mengandung berbagai komponen aktif yang bermanfaat bagi pertumbuhan ternak.Temu putih dan jahe gajah dapat dimanfaatkan sebagai imbuhan pakan karena mengandung minyak atsiri yang dapat berperan sebagai agen antibakteri. Penelitian ini bertujuan untuk mengetahui komponen penyusun minyak atsiri dan aktivitas antimikroba pada rimpang temu putih dan jahe gajah. Penelitian dilakukan dengan percobaan in vitro menggunakan temu putih dan jahe gajah yang diolah menjadi bentuk ekstrak minyak atsiri temu putih dan jahe gajah sebagai materi uji komposisi penyusun minyak atsiri serta bentuktepung dan enkapsulasi sebagai materi uji aktivitas antimikroba. Komposisi minyak atsiri temu putih terdiri dari lima komponen penyusun dengan cis-1,7-octadien-3-yl acetat sebagai komponen utama. Komposisi minyak atsiri jahe gajah terdiri dari tujuh komponen dan benzene,1-(1,5-dimethyl-4-hexenyl)-4-methyl-(CAS) ar-curcumene sebagai komponen utama. Minyak atsiri yang terkandung pada temu putih dan jahe gajah mempunyai peran dalam menghambat mikroba. Uji komposisi penyusun minyak atsiri menggunakan alat GC-MS dan uji aktivitas antimikroba menggunakan metode disc diffusion dan. Hasil dari uji aktivitas antimikroba menunjukkan bahwa temu putih dan jahe gajah dalam bentuk tepung dan enkapsulasi memiliki perbedaan yang sangat nyata (P<0,01) terhadap aktivitas antimikroba pada bakteri asam laktat, Escherichia coli dan Salmonella sp. Campuran temu putih dan jahe gajah (1:1) menunjukkan kemampuan terbaik dalam menghambat pertumbuhan bakteri patogen dengan diameter zona hambat 5,70±0,14 mm  (Escherichia coli) dan 6,88±0,45 mm (Salmonella sp.).Kata Kunci : antimikroba, fitobiotik, jahe gajah, minyak atsiri, temu putihABSTRACTThe poultry feed additives can contain herbal ingredients that contain various beneficial components for livestock growth. White turmeric and giant ginger can be used as feed additives because they contain essential oils that can be used as antibacterial agents. This study aims to determine the constituent components of essential oils and antimicrobial activity in white turmeric and giant ginger rhizomes. The study was carried out by in vitro experiments using white turmeric and giant ginger which were processed into the form of essential oil extract as material for the composition of essential oils test, and powder and encapsulation form as antimicrobial activity test material. The composition of essential oils of white turmeric consists of five constituent components with cis-1,7-octadien-3-yl acetate as the main component. The composition of giant ginger essential oil consists of seven components with benzene, 1- (1,5-dimethyl-4-hexenyl) -4-methyl- (CAS) ar-curcumene as the main component. Essential oils contained in the white turmeric and giant ginger have a role in inhibiting microbes. The composition of the essential oil tested using GC-MS and the antimicrobial activity test used the disc diffusion method. The results of the antimicrobial activity test showed that white turmeric and giant ginger in powder and encapsulation form had significant differences (P <0.01) on antimicrobial activity in lactic acid bacteria, Escherichia coli and Salmonella sp. The mixture of white turmeric and giant ginger (1: 1) showed the best ability to inhibit the growth of pathogenic bacteria with inhibitory zone diameters of 5.70 ± 0.14 mm (Escherichia coli) and 6.88 ± 0.45 mm (Salmonella sp.).Keywords: antimicrobial, essential oil, giant ginger, phytobiotic, white turmeric


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11934
Author(s):  
Jiashun Chen ◽  
Fang Wang ◽  
Yexin Yin ◽  
Xiaokang Ma

Garlic (Allium sativum) is an essential vegetable that has been widely utilized as seasoning, flavoring, culinary and in herbal remedies. Garlic contains several characteristic organosulfur compounds, such as diallyl sulfide, allicin (diallyl thiosulphate), γ-glutamylcysteine, and S-allyl cysteine (alliin) and ajoene, which garlic has beneficial effects on inflammation, oxidative stress markers, hypertension, hyperlipidaemia and endothelial function in vitro or in animal model. These bioactive molecules are also playing pivotal role in livestock and fisheries production apart from its application in humans. Supplementation of animal feed with garlic and its related products is consistent with the modern agricultural concept of organic animal husbandry. This review compiles the information describing the effects of feeding garlic and its extracts on selected performance parameters in animals (chicken, rabbits, ruminants, pigs and fish). This review may provide reference for scientists and entrepreneurs to investigate the applications of feeds added with garlic and allicin by-products for the improvement of animal husbandry and aquatic production.


2010 ◽  
Vol 25 (2) ◽  
pp. 151-156 ◽  
Author(s):  
Natasa Duduk ◽  
Aleksa Obradovic ◽  
Mirko Ivanovic

Effects of the volatile phase of thyme, cinnamon and clove essential oils on Colletotrichum acutatum were investigated. Mycelial disc was placed in the center of the Petri dish (V=66 ml) containing PDA. Different volumes of either non- or ethanol-diluted essential oils were placed on the inner side of the dish cover to obtain final concentrations of 153, 107, 76, 46, 15, 14, 12, 11, 7.6, 3.82, 1.53, 0.153 and 0.0153 ?l/L of air. The dishes were sealed with Parafilm and incubated in up-side-down position. After 7 days of incubation, mycelial growth was recorded by measuring the colony diameter. If no mycelial growth was recorded, the disc was transferred to a new PDA plate in order to evaluate whether the activity was either fungistatic or fungicidal. Mean growth values were obtained and then converted to inhibition percentage of mycelial growth compared with the control treatment. All the tested essential oils inhibited mycelial growth of C. acutatum in the dose dependent manner. Mycelial growth was totally inhibited by thyme oil in the concentration of 76 ?l/L of air. The same results were obtained by cinnamon and clove oil in the concentration of 107 ?l/L of air. Thyme and cinnamon oil had fungicidal effect in concentrations of 107 and 153 ?l/L respectively. The results obtained provide evidence on the antifungal in vitro effect of the tested essential oils as potential means for the control of C. acutatum.


Animals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 352 ◽  
Author(s):  
Pavel Horky ◽  
Sylvie Skalickova ◽  
Kristyna Smerkova ◽  
Jiri Skladanka

Essential oils (EOs) are now a hot topic in finding modern substitutes for antibiotics. Many studies have shown positive results and confirmed their high antibacterial activity both in vitro and in vivo. Deservedly, there is an attempt to use EOs as a substitute for antibiotics, which are currently limited by legislation in animal breeding. Given the potential of EOs, studies on their fate in the body need to be summarized. The content of EO’s active substances varies depending on growing conditions and consequently on processing and storage. Their content also changes dynamically during the passage through the gastrointestinal tract and their effective concentration can be noticeably diluted at their place of action (small intestine and colon). Based on the solubility of the individual EO’s active substances, they are eliminated from the body at different rates. Despite a strong antimicrobial effect, some oils can be toxic to the body and cause damage to the liver, kidneys, or gastrointestinal tissues. Reproductive toxicity has been reported for Origanum vulgare and Mentha arvensis. Several publications also address the effect on the genome. It has been observed that EOs can show both genoprotective effects (Syzygium aromaticum) and genotoxicity, as is the case of Cinnamomum camphor. This review shows that although oils are mainly studied as promising antimicrobials, it is also important to assess animal safety.


2020 ◽  
Vol 93 (4) ◽  
pp. 1381-1395
Author(s):  
Ana Laura Sosa ◽  
Natalia Soledad Girardi ◽  
Laura Cristina Rosso ◽  
Fabricio Salusso ◽  
Miriam Graciela Etcheverry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document