scholarly journals Development of Resistance in Escherichia coli ATCC25922 under Exposure of Sub-Inhibitory Concentration of Olaquindox

Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 791
Author(s):  
Yufeng Gu ◽  
Shuge Wang ◽  
Lulu Huang ◽  
Wei Sa ◽  
Jun Li ◽  
...  

Quinoxaline1,4-di-N-oxides (QdNOs) are a class of important antibacterial drugs of veterinary use, of which the drug resistance mechanism has not yet been clearly explained. This study investigated the molecular mechanism of development of resistance in Escherichia coli (E. coli) under the pressure of sub-inhibitory concentration (sub-MIC) of olaquindox (OLA), a representative QdNOs drug. In vitro challenge of E. coli with 1/100× MIC to 1/2× MIC of OLA showed that the bacteria needed a longer time to develop resistance and could only achieve low to moderate levels of resistance as well as form weak biofilms. The transcriptomic and genomic profiles of the resistant E. coli induced by sub-MIC of OLA demonstrated that genes involved in tricarboxylic acid cycle, oxidation-reduction process, biofilm formation, and efflux pumps were up-regulated, while genes involved in DNA repair and outer membrane porin were down-regulated. Mutation rates were significantly increased in the sub-MIC OLA-treated bacteria and the mutated genes were mainly involved in the oxidation-reduction process, DNA repair, and replication. The SNPs were found in degQ, ks71A, vgrG, bigA, cusA, and DR76-4702 genes, which were covered in both transcriptomic and genomic profiles. This study provides new insights into the resistance mechanism of QdNOs and increases the current data pertaining to the development of bacterial resistance under the stress of antibacterials at sub-MIC concentrations.

2016 ◽  
Vol 144 (14) ◽  
pp. 2967-2970 ◽  
Author(s):  
D. ORTEGA-PAREDES ◽  
P. BARBA ◽  
J. ZURITA

SUMMARYColistin resistance mediated by the mcr-1 gene has been reported worldwide, but to date not from the Andean region, South America. We report the first clinical isolate of Escherichia coli harbouring the mcr-1 gene in Ecuador. The strain was isolated from peritoneal fluid from a 14-year-old male with acute appendicitis, and subjected to molecular analysis. The minimum inhibitory concentration of colistin for the strain was 8 mg/ml and it was susceptible to carbapenems but resistant to tigecycline. The strain harboured mcr-1 and blaCTX-M-55 genes and was of sequence type 609. The recognition of an apparently commensal strain of E. coli harbouring mcr-1 serves as an alert to the presence in the region of this recently described resistance mechanism to one of the last line of drugs available for the treatment of multi-resistant Gram-negative infections.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Abdulkader Masri ◽  
Naveed Ahmed Khan ◽  
Muhammad Zarul Hanifah Md Zoqratt ◽  
Qasim Ayub ◽  
Ayaz Anwar ◽  
...  

Abstract Backgrounds Escherichia coli K1 causes neonatal meningitis. Transcriptome studies are indispensable to comprehend the pathology and biology of these bacteria. Recently, we showed that nanoparticles loaded with Hesperidin are potential novel antibacterial agents against E. coli K1. Here, bacteria were treated with and without Hesperidin conjugated with silver nanoparticles, and silver alone, and 50% minimum inhibitory concentration was determined. Differential gene expression analysis using RNA-seq, was performed using Degust software and a set of genes involved in cell stress response and metabolism were selected for the study. Results 50% minimum inhibitory concentration with silver-conjugated Hesperidin was achieved with 0.5 μg/ml of Hesperidin conjugated with silver nanoparticles at 1 h. Differential genetic analysis revealed the expression of 122 genes (≥ 2-log FC, P< 0.01) in both E. coli K1 treated with Hesperidin conjugated silver nanoparticles and E. coli K1 treated with silver alone, compared to untreated E. coli K1. Of note, the expression levels of cation efflux genes (cusA and copA) and translocation of ions, across the membrane genes (rsxB) were found to increase 2.6, 3.1, and 3.3- log FC, respectively. Significant regulation was observed for metabolic genes and several genes involved in the coordination of flagella. Conclusions The antibacterial mechanism of nanoparticles maybe due to disruption of the cell membrane, oxidative stress, and metabolism in E. coli K1. Further studies will lead to a better understanding of the genetic mechanisms underlying treatment with nanoparticles and identification of much needed novel antimicrobial drug candidates.


1993 ◽  
Vol 21 (2) ◽  
pp. 151-155
Author(s):  
Gustaw Kerszman

The toxicity of the first ten MEIC chemicals to Escherichia coli and Bacillus subtilis was examined. Nine of the chemicals were toxic to the bacteria, with the minimal inhibitory concentration (MIC) ranging from 10-3 to 4.4M. The sensitivities of both organisms were similar, but the effect on E. coli was often bactericidal, while it was bacteriostatic for B. subtilis. Digoxin was not detectably toxic to either bacterial species. Amitriptyline and FeSO4 were relatively less toxic to the bacteria than to human cells. For seven chemicals, a highly significant linear regression was established between log MIC in bacteria and log of blood concentration, giving lethal and moderate/mild toxicity in humans, as well as with toxicity to human lymphocytes.


Pathogens ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 811
Author(s):  
Md. Akil Hossain ◽  
Hae-Chul Park ◽  
Sung-Won Park ◽  
Seung-Chun Park ◽  
Min-Goo Seo ◽  
...  

Pathogenic Escherichia coli (E. coli)-associated infections are becoming difficult to treat because of the rapid emergence of antibiotic-resistant strains. Novel approaches are required to prevent the progression of resistance and to extend the lifespan of existing antibiotics. This study was designed to improve the effectiveness of traditional antibiotics against E. coli using a combination of the gallic acid (GA), hamamelitannin, epicatechin gallate, epigallocatechin, and epicatechin. The fractional inhibitory concentration index (FICI) of each of the phenolic compound-antibiotic combinations against E. coli was ascertained. Considering the clinical significance and FICI, two combinations (hamamelitannin-erythromycin and GA-ampicillin) were evaluated for their impact on certain virulence factors of E. coli. Finally, the effects of hamamelitannin and GA on Rattus norvegicus (IEC-6) cell viability were investigated. The FICIs of the antibacterial combinations against E. coli were 0.281–1.008. The GA-ampicillin and hamamelitannin-erythromycin combinations more effectively prohibited the growth, biofilm viability, and swim and swarm motilities of E. coli than individual antibiotics. The concentration of hamamelitannin and GA required to reduce viability by 50% (IC50) in IEC-6 cells was 988.54 μM and 564.55 μM, correspondingly. GA-ampicillin and hamamelitannin-erythromycin may be potent combinations and promising candidates for eradicating pathogenic E. coli in humans and animals.


2021 ◽  
Author(s):  
Shirin Ansari ◽  
James C. Walsh ◽  
Amy L. Bottomley ◽  
Iain G. Duggin ◽  
Catherine Burke ◽  
...  

Rod-shaped bacteria such as Escherichia coli can regulate cell division in response to stress, leading to filamentation, a process where cell growth and DNA replication continues in the absence of division, resulting in elongated cells. The classic example of stress is DNA damage which results in the activation of the SOS response. While the inhibition of cell division during SOS has traditionally been attributed to SulA in E. coli, a previous report suggests that the e14 prophage may also encode an SOS-inducible cell division inhibitor, previously named SfiC. However, the exact gene responsible for this division inhibition has remained unknown for over 35 years. A recent high-throughput over-expression screen in E. coli identified the e14 prophage gene, ymfM, as a potential cell division inhibitor. In this study, we show that the inducible expression of ymfM from a plasmid causes filamentation. We show that this expression of ymfM results in the inhibition of Z ring formation and is independent of the well characterised inhibitors of FtsZ ring assembly in E. coli, SulA, SlmA and MinC. We confirm that ymfM is the gene responsible for the SfiC phenotype as it contributes to the filamentation observed during the SOS response. This function is independent of SulA, highlighting that multiple alternative division inhibition pathways exist during the SOS response. Our data also highlight that our current understanding of cell division regulation during the SOS response is incomplete and raises many questions regarding how many inhibitors there actually are and their purpose for the survival of the organism. Importance: Filamentation is an important biological mechanism which aids in the survival, pathogenesis and antibiotic resistance of bacteria within different environments, including pathogenic bacteria such as uropathogenic Escherichia coli. Here we have identified a bacteriophage-encoded cell division inhibitor which contributes to the filamentation that occurs during the SOS response. Our work highlights that there are multiple pathways that inhibit cell division during stress. Identifying and characterising these pathways is a critical step in understanding survival tactics of bacteria which become important when combating the development of bacterial resistance to antibiotics and their pathogenicity.


Microbiology ◽  
2003 ◽  
Vol 149 (7) ◽  
pp. 1763-1770 ◽  
Author(s):  
Ryszard Zielke ◽  
Aleksandra Sikora ◽  
Rafał Dutkiewicz ◽  
Grzegorz Wegrzyn ◽  
Agata Czyż

CgtA is a member of the Obg/Gtp1 subfamily of small GTP-binding proteins. CgtA homologues have been found in various prokaryotic and eukaryotic organisms, ranging from bacteria to humans. Nevertheless, despite the fact that cgtA is an essential gene in most bacterial species, its function in the regulation of cellular processes is largely unknown. Here it has been demonstrated that in two bacterial species, Escherichia coli and Vibrio harveyi, the cgtA gene product enhances survival of cells after UV irradiation. Expression of the cgtA gene was found to be enhanced after UV irradiation of both E. coli and V. harveyi. Moderate overexpression of cgtA resulted in higher UV resistance of E. coli wild-type and dnaQ strains, but not in uvrA, uvrB, umuC and recA mutant hosts. Overexpression of the E. coli recA gene in the V. harveyi cgtA mutant, which is very sensitive to UV light, restored the level of survival of UV-irradiated cells to the levels observed for wild-type bacteria. Moreover, the basal level of the RecA protein was lower in a temperature-sensitive cgtA mutant of E. coli than in the cgtA + strain, and contrary to wild-type bacteria, no significant increase in recA gene expression was observed after UV irradiation of this cgtA mutant. Finally, stimulation of uvrB gene transcription under these conditions was impaired in the V. harveyi cgtA mutant. All these results strongly suggest that the cgtA gene product is involved in DNA repair processes, most probably by stimulation of recA gene expression and resultant activation of RecA-dependent DNA repair pathways.


2014 ◽  
Vol 77 (4) ◽  
pp. 558-566 ◽  
Author(s):  
BIN ZHOU ◽  
YAGUANG LUO ◽  
XIANGWU NOU ◽  
PATRICIA MILLNER

The dynamic interactions of chlorine and organic matter during a simulated fresh-cut produce wash process and the consequences for Escherichia coli O157:H7 inactivation were investigated. An algorithm for a chlorine feed-forward dosing scheme to maintain a stable chlorine level was further developed and validated. Organic loads with chemical oxygen demand of 300 to 800 mg/liter were modeled using iceberg lettuce. Sodium hypochlorite (NaOCl) was added to the simulated wash solution incrementally. The solution pH, free and total chlorine, and oxidation-reduction potential were monitored, and chlorination breakpoint and chloramine humps determined. The results indicated that the E. coli O157:H7 inactivation curve mirrored that of the free chlorine during the chlorine replenishment process: a slight reduction in E. coli O157:H7 was observed as the combined chlorine hump was approached, while the E. coli O157:H7 cell populations declined sharply after chlorination passed the chlorine hump and decreased to below the detection limit (&lt;0.75 most probable number per ml) after the chlorination breakpoint was reached. While the amounts of NaOCl required for reaching the chloramine humps and chlorination breakpoints depended on the organic loads, there was a linear correlation between NaOCl input and free chlorine in the wash solution once NaOCl dosing passed the chlorination breakpoint, regardless of organic load. The data obtained were further exploited to develop a NaOCl dosing algorithm for maintaining a stable chlorine concentration in the presence of an increasing organic load. The validation tests results indicated that free chlorine could be maintained at target levels using such an algorithm, while the pH and oxidation-reduction potential were also stably maintained using this system.


2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Jingchao Chen ◽  
Yi Li ◽  
Kun Zhang ◽  
Hailei Wang

ABSTRACT The genomes of many strains of Escherichia coli have been sequenced, as this organism is a classic model bacterium. Here, we report the genome sequence of Escherichia coli DH5α, which is resistant to a T4 bacteriophage (CCTCC AB 2015375), while its other homologous E. coli strains, such as E. coli BL21, DH10B, and MG1655, are not resistant to phage invasions. Thus, understanding of the genome of the DH5α strain, along with comparative analysis of its genome sequence along with other sequences of E. coli strains, may help to reveal the bacteriophage resistance mechanism of E. coli .


2019 ◽  
Vol 201 (16) ◽  
Author(s):  
Christopher J. Alteri ◽  
Stephanie D. Himpsl ◽  
Allyson E. Shea ◽  
Harry L. T. Mobley

ABSTRACTBacterial metabolism is necessary for adaptation to the host microenvironment. Flexible metabolic pathways allow uropathogenicEscherichia coli(UPEC) to harmlessly reside in the human intestinal tract and cause disease upon extraintestinal colonization.E. coliintestinal colonization requires carbohydrates as a carbon source, while UPEC extraintestinal colonization requires gluconeogenesis and the tricarboxylic acid cycle. UPEC containing disruptions in two irreversible glycolytic steps involving 6-carbon (6-phosphofructokinase;pfkA) and 3-carbon (pyruvate kinase;pykA) substrates have no fitness defect during urinary tract infection (UTI); however, both reactions are catalyzed by isozymes: 6-phosphofructokinases Pfk1 and Pfk2, encoded bypfkAandpfkB, and pyruvate kinases Pyk II and Pyk I, encoded bypykAandpykF. UPEC strains lacking one or both phosphofructokinase-encoding genes (pfkBandpfkA pfkB) and strains lacking one or both pyruvate kinase genes (pykFandpykA pykF) were investigated to determine their regulatory roles in carbon flow during glycolysis by examining their fitness during UTI andin vitrogrowth requirements. Loss of a single phosphofructokinase-encoding gene has no effect on fitness, while thepfkA pfkBdouble mutant outcompeted the parental strain in the bladder. A defect in bladder and kidney colonization was observed with loss ofpykF, while loss ofpykAresulted in a fitness advantage. ThepykA pykFmutant was indistinguishable from wild-typein vivo, suggesting that the presence of Pyk II rather than the loss of Pyk I itself is responsible for the fitness defect in thepykFmutant. These findings suggest thatE. colisuppresses latent enzymes to survive in the host urinary tract.IMPORTANCEUrinary tract infections are the most frequently diagnosed urologic disease, with uropathogenicEscherichia coli(UPEC) infections placing a significant financial burden on the health care system by generating more than two billion dollars in annual costs. This, in combination with steadily increasing antibiotic resistances to present day treatments, necessitates the discovery of new antimicrobial agents to combat these infections. By broadening our scope beyond the study of virulence properties and investigating bacterial physiology and metabolism, we gain a better understanding of how pathogens use nutrients and compete within host microenvironments, enabling us to cultivate new therapeutics to exploit and target pathogen growth requirements in a specific host environment.


2018 ◽  
Vol 13 (7) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Subrat Kumar Bhattamisra ◽  
Chew Hui Kuean ◽  
Lee Boon Chieh ◽  
Vivian Lee Yean Yan ◽  
Chin Koh Lee ◽  
...  

The antibacterial activity of geraniol and its effect in combination with ampicillin, amoxicillin and clarithromycin against Staphylococcus aureus, Escherichia coli and Helicobacter pylori was tested. The minimum inhibitory concentrations (MICs) and combinatory effects of geraniol against the bacteria were assessed by using the modified broth microdilution and checkerboard assay, respectively. The combinatory effect is expressed as fractional inhibitory concentration index (FICI). The MIC of geraniol against S. aureus, E. coli and H. pylori was found to be 11200, 5600, and 7325 μg/mL, respectively. A significant synergistic effect was observed with geraniol and ampicillin against S. aureus with FICI in the range 0.19 to 0.32. Geraniol and ampicillin exhibited a partial synergistic effect against E. coli. A similar effect was observed with geraniol and clarithromycin against S. aureus. A partial synergistic effect was observed with clarithromycin and geraniol against H. pylori with the FICI value in the range 0.86 to 0.89. An additive effect was observed with geraniol and amoxicillin combination against H. pylori. However, the amoxicillin and clarithromycin dose was reduced by thirty-two fold when combined with geraniol against H. pylori. The anti- H. pylori effect of geraniol with clarithromycin and amoxicillin could be of potential interest in the treatment of H. pylori infection and associated ulcers in humans. Further, geraniol, in combination with other antibiotics, has substantial therapeutic potential against S. aureus and E.coli infection.


Sign in / Sign up

Export Citation Format

Share Document