scholarly journals GSNOR Contributes to Demethylation and Expression of Transposable Elements and Stress-Responsive Genes

Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1128
Author(s):  
Eva Esther Rudolf ◽  
Patrick Hüther ◽  
Ignasi Forné ◽  
Elisabeth Georgii ◽  
Yongtao Han ◽  
...  

In the past, reactive nitrogen species (RNS) were supposed to be stress-induced by-products of disturbed metabolism that cause oxidative damage to biomolecules. However, emerging evidence demonstrates a substantial role of RNS as endogenous signals in eukaryotes. In plants, S-nitrosoglutathione (GSNO) is the dominant RNS and serves as the •NO donor for S-nitrosation of diverse effector proteins. Remarkably, the endogenous GSNO level is tightly controlled by S-nitrosoglutathione reductase (GSNOR) that irreversibly inactivates the glutathione-bound NO to ammonium. Exogenous feeding of diverse RNS, including GSNO, affected chromatin accessibility and transcription of stress-related genes, but the triggering function of RNS on these regulatory processes remained elusive. Here, we show that GSNO reductase-deficient plants (gsnor1-3) accumulate S-adenosylmethionine (SAM), the principal methyl donor for methylation of DNA and histones. This SAM accumulation triggered a substantial increase in the methylation index (MI = [SAM]/[S-adenosylhomocysteine]), indicating the transmethylation activity and histone methylation status in higher eukaryotes. Indeed, a mass spectrometry-based global histone profiling approach demonstrated a significant global increase in H3K9me2, which was independently verified by immunological detection using a selective antibody. Since H3K9me2-modified regions tightly correlate with methylated DNA regions, we also determined the DNA methylation status of gsnor1-3 plants by whole-genome bisulfite sequencing. DNA methylation in the CG, CHG, and CHH contexts in gsnor1-3 was significantly enhanced compared to the wild type. We propose that GSNOR1 activity affects chromatin accessibility by controlling the transmethylation activity (MI) required for maintaining DNA methylation and the level of the repressive chromatin mark H3K9me2.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
María I. Pozo ◽  
Benjamin J. Hunt ◽  
Gaby Van Kemenade ◽  
Jose M. Guerra-Sanz ◽  
Felix Wäckers ◽  
...  

Abstract Background Although around 1% of cytosines in bees’ genomes are known to be methylated, less is known about methylation’s effect on bee behavior and fitness. Chemically altered DNA methylation levels have shown clear changes in the dominance and reproductive behavior of workers in queen-less colonies, but the global effect of DNA methylation on caste determination and colony development remains unclear, mainly because of difficulties in controlling for genetic differences among experimental subjects in the parental line. Here, we investigated the effect of the methylation altering agent decitabine on the developmental rate of full bumblebee colonies. Whole genome bisulfite sequencing was used to assess differences in methylation status. Results Our results showed fewer methylated loci in the control group. A total of 22 CpG loci were identified as significantly differentially methylated between treated and control workers with a change in methylation levels of 10% or more. Loci that were methylated differentially between groups participated in pathways including neuron function, oocyte regulation and metabolic processes. Treated colonies tended to develop faster, and therefore more workers were found at a given developmental stage. However, male production followed the opposite trend and it tended to be higher in control colonies. Conclusion Overall, our results indicate that altered methylation patterns resulted in an improved cooperation between workers, while there were no signs of abnormal worker dominance or caste determination.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Changzi Yuan ◽  
Junxia Mao ◽  
Hongyan Sun ◽  
Yiying Wang ◽  
Ming Guo ◽  
...  

Abstract Background Mollusca, a phylum of highly rich species, possess vivid shell colours, but the underlying molecular mechanism remains to be elucidated. DNA methylation, one of the most common epigenetic modifications in eukaryotes, is believed to play a vital role in various biological processes. However, analysis of the effects of DNA methylation on shell colouration has rarely been performed in molluscs, limiting the current knowledge of the molecular mechanism of shell colour formation. Results In the present study, to reveal the role of epigenetic regulation in shell colouration, WGBS, the “gold standard” of DNA methylation analysis, was first performed on the mantle tissues of Yesso scallops (Patinopecten yessoensis) with different shell colours (brown and white), and DNA methylomes at single-base resolution were generated. About 3% of cytosines were methylated in the genome of the Yesso scallop. A slight increase in mCG percentage and methylation level was found in brown scallops. Sequence preference of nearby methylated cytosines differed between high and low methylation level sites and between the brown- and white-shelled scallops. DNA methylation levels varied among the different genomic regions; all the detected regions in the brown group exhibited higher methylation levels than the white group. A total of 41,175 DMRs (differentially methylated regions) were detected between brown and white scallops. GO functions and pathways associated with the biosynthesis of melanin and porphyrins were significantly enriched for DMRs, among which several key shell colour-related genes were identified. Further, different correlations between mRNA expression levels and DNA methylation status were found in these genes, suggesting that DNA methylation regulates shell colouration in the Yesso scallop. Conclusions This study provides genome-wide DNA methylation landscapes of Yesso scallops with different shell colours, offering new insights into the epigenetic regulatory mechanism underlying shell colour.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ludovica Vanzan ◽  
Hadrien Soldati ◽  
Victor Ythier ◽  
Santosh Anand ◽  
Simon M. G. Braun ◽  
...  

AbstractBinding of mammalian transcription factors (TFs) to regulatory regions is hindered by chromatin compaction and DNA methylation of their binding sites. Nevertheless, pioneer transcription factors (PFs), a distinct class of TFs, have the ability to access nucleosomal DNA, leading to nucleosome remodelling and enhanced chromatin accessibility. Whether PFs can bind to methylated sites and induce DNA demethylation is largely unknown. Using a highly parallelized approach to investigate PF ability to bind methylated DNA and induce DNA demethylation, we show that the interdependence between DNA methylation and TF binding is more complex than previously thought, even within a select group of TFs displaying pioneering activity; while some PFs do not affect the methylation status of their binding sites, we identified PFs that can protect DNA from methylation and others that can induce DNA demethylation at methylated binding sites. We call the latter super pioneer transcription factors (SPFs), as they are seemingly able to overcome several types of repressive epigenetic marks. Finally, while most SPFs induce TET-dependent active DNA demethylation, SOX2 binding leads to passive demethylation, an activity enhanced by the co-binding of OCT4. This finding suggests that SPFs could interfere with epigenetic memory during DNA replication.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i38-i38
Author(s):  
Dean Thompson ◽  
Jemma Castle ◽  
Debbie Hicks ◽  
Steve Clifford ◽  
Ed Schwalbe

Abstract Introduction International consensus recognises four molecular subgroups of medulloblastoma, each with distinct molecular features and clinical outcomes. The current gold-standard for subgroup assignment is DNA methylation microarray. There is an unmet need to develop platform-independent subgrouping assays which are both non-proprietary and compatible with rapidly-expanding WGS capacity in healthcare. Whole Genome Bisulfite Sequencing (WGBS) enables the assessment of genome-wide methylation status at single-base resolution. Previously, WGBS adoption has been limited by cost and sample quality/quantity requirements. Its application for routine detection of medulloblastoma subgroups has not previously been reported. Methodology Two datasets were utilised; 36 newly-sequenced low-depth (10x coverage) and 34 publicly-available high-depth (30x) WGBS medulloblastomas, all with matched DNA methylation microarray data. We compared platform concordance and identified molecular subgroups. Machine-learning WGBS-based subgroup classifiers were optimised and compared between platforms. Aneuploidy and mutation detection using WGBS was optimised and compared to microarray-derived estimates where possible. Finally, comprehensive subgroup-specific DNA methylation signatures were identified. Results We optimised a pipeline for processing, quality control and analysis of low-depth WGBS data, suitable for routine molecular subgrouping and aneuploidy assessment. We demonstrated the suitability of fresh-frozen and FFPE DNA for WGBS, and, using downsampling, showed that subgroup calling is robust at coverages as low as 2x. We identified differentially methylated regions that, due to poor representation, could not be detected using methylation microarrays. Molecular subgroups of medulloblastoma assigned using WGBS were concordant with array-based definitions, and WGBS-derived classifier performance measures exceeded microarray-derived classifiers. Conclusion We describe a platform-independent assay for molecular subgrouping of medulloblastoma using WGBS. It performs equivalently to current array-based methods at comparable cost ($405 vs $596) and provides a proof-of-concept for its routine clinical adoption using standard WGS technology. Finally, the full methylome enabled elucidation of additional biological heterogeneity that has hitherto been inaccessible.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1337
Author(s):  
Prashant Kumar Singh ◽  
Golan Miller ◽  
Adi Faigenboim ◽  
Michal Lieberman-Lazarovich

Heat stress is a major environmental factor limiting crop productivity, thus presenting a food security challenge. Various approaches are taken in an effort to develop crop species with enhanced tolerance to heat stress conditions. Since epigenetic mechanisms were shown to play a regulatory role in mediating plants’ responses to their environment, we investigated the role of DNA methylation in response to heat stress in tomato (Solanum lycopersicum), an important vegetable crop. To meet this aim, we tested a DNA methylation-deficient tomato mutant, Slddm1b. In this short communication paper, we report phenotypic and transcriptomic preliminary findings, implying that the tomato ddm1b mutant is significantly less sensitive to heat stress compared with the background tomato line, M82. Under conditions of heat stress, this mutant line presented higher fruit set and seed set rates, as well as a higher survival rate at the seedling stage. On the transcriptional level, we observed differences in the expression of heat stress-related genes, suggesting an altered response of the ddm1b mutant to this stress. Following these preliminary results, further research would shed light on the specific genes that may contribute to the observed thermotolerance of ddm1b and their possibly altered DNA methylation status.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 608-608 ◽  
Author(s):  
David H. Spencer ◽  
Bilal Al-Khalil ◽  
David Russler-Germain ◽  
Tamara Lamprecht ◽  
Nicole Havey ◽  
...  

Abstract Mutations in the de novo DNA methyltransferase DNMT3A are found in ~25% of patients with acute myeloid leukemia (AML) and most commonly affect codon 882 within the catalytic domain of the protein. We have previously shown that this mutation has dominant negative activity in vitro and is associated with hypomethylation at specific CpG dinucleotides in primary AML samples using array-based methylation data. However, the genome-wide extent and patterns of DNA methylation associated with this hypomethylation are currently unknown. In addition, it is unclear if the methylation differences caused by this mutation result in RNA expression changes at specific targets across the genome, or whether they are associated with altered chromatin structure. To explore the genome-wide consequences of the DNMT3A R882H mutation on DNA methylation and chromatin structure, we carried out whole-genome bisulfite sequencing (WGBS) and transposase-mediated chromatin accessibility profiling (ATAC-seq) on 3 primary normal karyotype AML samples with the DNMT3A R882H mutation and 4 matched AML samples without a DNMT3A mutation. All 7 had the NPMc mutation but lacked mutations in other genes involved in DNA methylation, including IDH1, IDH2, and TET2. WGBS produced methylation data on >93% of the CpGs in the human reference sequence with a median coverage of 7-13x. The overall mean methylation was not statistically different in the samples with R882H mutations, although there was a small but statistically significant difference in the methylation at CpGs in CpG islands (DNMT3A R882H mean: 18.1%, DNMT3A wild-type mean: 21.4%; P=0.02). Differential methylation analysis was performed on ~5 million CpG clusters (median of 5 CpGs per cluster; median cluster size of 202 bp) and identified 95,845 differentially methylated clusters with a mean difference >25% and a q-value < 0.01, the majority of which (88,512; 93%) were hypomethylated in the DNMT3A R882H samples. Using more strict criteria (>50% mean difference) and merging differentially methylated clusters within 50 bp, we identified 2,782 differentially methylated regions (DMRs) with a mean size of 255 bp (median of 11 CpGs), of which 97% were hypomethylated. These DMRs were distributed across the genome and were statistically associated with CpG dense regions, including annotated CpG islands and shores (islands: 1,104 of 2,782; 29.9%; shores: 1,118 of 2,782; 30.3%; P<10-10), and gene promoters (816 of 2,782; 23.7%; P< 10-12). Analysis of chromatin accessibility data from 6 samples (3 DNMT3A R882H and 3 DNMT3A wild-type) showed that a subset of the DNMT3A R882H-associated hypomethylated DMRs (366 of 2,704; 13.5%) were located within 100 bp of an ATAC-seq peak unique to DNMT3A R882H AML samples. Further analysis of all DMRs showed ATAC-seq signal enrichment in the R882H samples specifically at hypomethylated loci (Figure 1). Similar enrichment was not observed in the DNMT3A wild-type AMLs at hypomethylated DMRs (N=78), suggesting that hypomethylation caused by the DNMT3A R882H mutation is specifically associated with changes in chromatin structure. Initial analysis of existing PolyA+ RNA-seq data for these AMLs did not reveal canonical expression changes in annotated genes located near the DMRs, implying that methylation and other epigenetic changes might affect distant genes or previously unannotated RNA species that were not present in our dataset. Efforts to sequence all RNA species present in these samples are therefore underway. In summary, we have conducted an initial analysis of genome-wide, CpG-resolution DNA methylation data from primary AML samples with the DNMT3A R882H mutation. This mutation is associated with a genome-wide, focal hypomethylation phenotype that occurs at small, CpG-dense loci across the genome. We also found that many hypomethylated loci are associated with changes in chromatin structure. These findings represent the first evidence that the methylation changes caused by this mutation can have functional consequences on the epigenetic state of specific loci in AML cells, and set the stage for defining the specific events that are responsible for AML pathogenesis in patients who have this mutation. Figure 1 WGBS (bottom tracks) and chromatin accessibility (ATAC-seq, top tracks) from 3 primary AML samples with the DNMT3A R882H mutation (in red) and 3 with no DNMT3A mutation (in blue) at a hypomethylated locus within the HS3ST3B1 gene. Figure 1. WGBS (bottom tracks) and chromatin accessibility (ATAC-seq, top tracks) from 3 primary AML samples with the DNMT3A R882H mutation (in red) and 3 with no DNMT3A mutation (in blue) at a hypomethylated locus within the HS3ST3B1 gene. Disclosures No relevant conflicts of interest to declare.


2010 ◽  
Vol 37 (9) ◽  
pp. 960-966 ◽  
Author(s):  
Jie CHEN ◽  
Dong-Jie LI ◽  
Cui ZHANG ◽  
Ning LI ◽  
Shi-Jie LI

2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Julia C. Chen ◽  
Mardonn Chua ◽  
Raymond B. Bellon ◽  
Christopher R. Jacobs

Osteogenic lineage commitment is often evaluated by analyzing gene expression. However, many genes are transiently expressed during differentiation. The availability of genes for expression is influenced by epigenetic state, which affects the heterochromatin structure. DNA methylation, a form of epigenetic regulation, is stable and heritable. Therefore, analyzing methylation status may be less temporally dependent and more informative for evaluating lineage commitment. Here we analyzed the effect of mechanical stimulation on osteogenic differentiation by applying fluid shear stress for 24 hr to osteocytes and then applying the osteocyte-conditioned medium (CM) to progenitor cells. We analyzed gene expression and changes in DNA methylation after 24 hr of exposure to the CM using quantitative real-time polymerase chain reaction and bisulfite sequencing. With fluid shear stress stimulation, methylation decreased for both adipogenic and osteogenic markers, which typically increases availability of genes for expression. After only 24 hr of exposure to CM, we also observed increases in expression of later osteogenic markers that are typically observed to increase after seven days or more with biochemical induction. However, we observed a decrease or no change in early osteogenic markers and decreases in adipogenic gene expression. Treatment of a demethylating agent produced an increase in all genes. The results indicate that fluid shear stress stimulation rapidly promotes the availability of genes for expression, but also specifically increases gene expression of later osteogenic markers.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jack Hearn ◽  
Fiona Plenderleith ◽  
Tom J. Little

Abstract Background Patterns of methylation influence lifespan, but methylation and lifespan may also depend on diet, or differ between genotypes. Prior to this study, interactions between diet and genotype have not been explored together to determine their influence on methylation. The invertebrate Daphnia magna is an excellent choice for testing the epigenetic response to the environment: parthenogenetic offspring are identical to their siblings (making for powerful genetic comparisons), they are relatively short lived and have well-characterised inter-strain life-history trait differences. We performed a survival analysis in response to caloric restriction and then undertook a 47-replicate experiment testing the DNA methylation response to ageing and caloric restriction of two strains of D. magna. Results Methylated cytosines (CpGs) were most prevalent in exons two to five of gene bodies. One strain exhibited a significantly increased lifespan in response to caloric restriction, but there was no effect of food-level CpG methylation status. Inter-strain differences dominated the methylation experiment with over 15,000 differently methylated CpGs. One gene, Me31b, was hypermethylated extensively in one strain and is a key regulator of embryonic expression. Sixty-one CpGs were differentially methylated between young and old individuals, including multiple CpGs within the histone H3 gene, which were hypermethylated in old individuals. Across all age-related CpGs, we identified a set that are highly correlated with chronological age. Conclusions Methylated cytosines are concentrated in early exons of gene sequences indicative of a directed, non-random, process despite the low overall DNA methylation percentage in this species. We identify no effect of caloric restriction on DNA methylation, contrary to our previous results, and established impacts of caloric restriction on phenotype and gene expression. We propose our approach here is more robust in invertebrates given genome-wide CpG distributions. For both strain and ageing, a single gene emerges as differentially methylated that for each factor could have widespread phenotypic effects. Our data showed the potential for an epigenetic clock at a subset of age positions, which is exciting but requires confirmation.


Sign in / Sign up

Export Citation Format

Share Document