scholarly journals Pterostilbene Increases LDL Metabolism in HL-1 Cardiomyocytes by Modulating the PCSK9/HNF1α/SREBP2/LDLR Signaling Cascade, Upregulating Epigenetic hsa-miR-335 and hsa-miR-6825, and LDL Receptor Expression

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1280
Author(s):  
Yen-Kuang Lin ◽  
Chi-Tai Yeh ◽  
Kuang-Tai Kuo ◽  
Vijesh Kumar Yadav ◽  
Iat-Hang Fong ◽  
...  

Proprotein convertase subtilisin/kexin type 9 (PCSK9) can promote the degradation of low-density lipoprotein (LDL) receptor (LDLR), leading to hypercholesterolemia and myocardial dysfunction. The intracellular regulatory mechanism by which the natural polyphenol pterostilbene modulates the PCSK9/LDLR signaling pathway in cardiomyocytes has not been evaluated. We conducted Western blotting, flow cytometry, immunofluorescence staining, and mean fluorescence intensity analyses of pterostilbene-treated mouse HL-1 cardiomyocytes. Pterostilbene did not alter cardiomyocyte viability. Compared to the control group, treatment with both 2.5 and 5 μM pterostilbene significantly increased the LDLR protein expression accompanied by increased uptake of LDL. The expression of the mature PCSK9 was significantly suppressed at the protein and mRNA level by the treatment with both 2.5 and 5 μM pterostilbene, respectively, compared to the control. Furthermore, 2.5 and 5 μM pterostilbene treatment resulted in a significant reduction in the protein hepatic nuclear factor 1α (HNF1α)/histone deacetylase 2 (HDAC2) ratio and sterol regulatory element-binding protein-2 (SREBP2)/HDAC2 ratio. The expression of both hypoxia-inducible factor-1 α (HIF1α) and nuclear factor erythroid 2-related factor 2 (Nrf2) at the protein level was also suppressed. Pterostilbene as compared to short hairpin RNA against SREBP2 induced a higher protein expression of LDLR and lower nuclear accumulation of HNF1α and SREBP2. In addition, pterostilbene reduced PCSK9/SREBP2 interaction and mRNA expression by increasing the expression of hsa-miR-335 and hsa-miR-6825, which, in turn, increased LDLR mRNA expression. In cardiomyocytes, pterostilbene dose-dependently decreases and increases the protein and mRNA expression of PCSK9 and LDLR, respectively, by suppressing four transcription factors, HNF1α, SREBP2, HIF1α, and Nrf2, and enhancing the expression of hsa-miR-335 and hsa-miR-6825, which suppress PCSK9/SREBP2 interaction.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2086
Author(s):  
Imran Kazmi ◽  
Fahad A. Al-Abbasi ◽  
Muhammad Afzal ◽  
Hisham N. Altayb ◽  
Muhammad Shahid Nadeem ◽  
...  

The present study was designed to prepare Kaempferol loaded nanoparticles (KFP-Np) and evaluate hepatoprotective and antioxidant effects in hepatocellular carcinoma models. KFP was encapsulated with hydroxypropyl methylcellulose acetate succinate (HPMC-AS) and Kollicoat MAE 30 DP polymers to prepare nanoparticles (Nps) by quasi-emulsion solvent diffusion technique (QESD). The prepared Nps were evaluated for different pharmaceutical characterization to select the optimum composition for the in vivo assessment. An animal model of cadmium chloride (CdCl2)-induced hepatocellular carcinoma in Male Sprague Dawley rats was used in vivo to test the antioxidant and hepatoprotective capacity of free and encapsulated KFP. The prepared Npsshowed nanometric size, low PDI, high drug load as well as encapsulation with a better drug release profile. There was a significant decrease in the increased serum levels of alanine transaminase (ALT), total bilirubin (TBiL), and aspartate transaminase (AST), and the lipid peroxidation’s (MDA) level was attenuated, and levels of markers of the cell antioxidant defence system were restored including Glutathione S-transferase (GST), glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) via oral pre-treatment with KFP-Np (50 mg/kg b.w. (body weight), 6 weeks). KFP-Np significantly declines an mRNA expression of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α) as well as decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) protein expression. It also upregulated the mRNA expression and protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). While comparing the protective effects of KFP encapsulated in Kollicoat MAE 30 DP and HPMC-AS, Nps was found to be betterthan free KFP. Insummary, result indicate that encapsulation of KFP in NPs provides a potential platform for oxidative stress induce liver injury.


2021 ◽  
Author(s):  
Magdalena Szymanska ◽  
Agnieszka Blitek

Abstract Background: The hormonal control of ovulation has become a standard procedure in the swine industry. However, exogenous gonadotropins can be detrimental to reproductive function, affecting follicle development, corpus luteum formation, and embryo development and survival. Much less is known about uterine receptivity in gilts with induced estrus. Therefore, our objective was to determine the effect of estrus induction with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) on the expression of steroid, prostaglandin, cytokine, and oxytocin receptors, as well as nuclear factor kappa B subunit 1 (NFKB1), peroxisome proliferator activated receptor gamma (PPARG), and gap junction protein alpha 1 (GJA1), in the endometrium and myometrium of early pregnant gilts. Twenty prepubertal gilts received 750 IU PMSG and 500 IU hCG 72 h later, while eighteen prepubertal gilts in the control group were observed daily for estrus behavior. All gilts were inseminated in their first estrus and slaughtered on days 10, 12, and 15 of pregnancy to collect uterine tissues for mRNA expression analyses using real-time PCR.Results: Estrus induction did not affect progesterone receptor expression in either uterine tissue. In the endometrium, greater mRNA expression of estrogen receptors (ESR1 and ESR2), androgen receptor (AR), prostaglandin (PG) E2 receptors (PTGER2 and PTGER4), PGF2α receptor (PTGFR), interleukin 6 receptor (IL6R), tumor necrosis factor α receptors (TNFRSF1A and TNFRSF1B), and oxytocin receptor (OXTR) was detected in the control than in the PMSG/hCG-treated gilts (P < 0.05). In the myometrium, concentrations of AR, PTGER2, PTGFR, and NFKB1 transcripts were lower, while PGI2 receptor and PPARG transcripts were elevated in gilts with gonadotropin-induced estrus as compared with naturally ovulated gilts (P < 0.05). Furthermore, the administration of PMSG/hCG resulted in the greater expression of GJA1 mRNA in both the endometrium and myometrium of day 15 pregnant gilts (P < 0.05). Conclusions: Estrus induction with PMSG/hCG in prepubertal gilts may affect steroid, prostaglandin, cytokine, and oxytocin receptor expression in the endometrium and myometrium, thereby altering uterine receptivity to local or systemic factors. This may, in turn, contribute to disorders in embryo-maternal interactions and the process of implantation.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3364 ◽  
Author(s):  
Liang Jing ◽  
Jing-Ru Jiang ◽  
Dong-Mei Liu ◽  
Ji-Wen Sheng ◽  
Wei-Fen Zhang ◽  
...  

The purpose of this study was to characterize the polysaccharides from Athyrium multidentatum (Doll.) Ching (AMC) rhizome and explore the protective mechanism against d-galactose-induced oxidative stress in aging mice. Methods: A series of experiments, including molecular weight, monosaccharide composition, Fourier transform infrared (FT-IR) spectroscopy, and 1H nuclear magnetic resonance (1H NMR) spectroscopy were carried out to characterize AMC polysaccharides. The mechanism was investigated exploring d-galactose-induced aging mouse model. Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) and western blotting assays were performed to assess the gene and protein expression in liver. Key findings: Our results showed that AMC polysaccharides were mainly composed of mannose (Man), rhamnose (Rha), glucuronic acid (Glc A), glucose (Glc), galactose (Gal), arabinose (Ara), and fucose (Fuc) in a molar ratio of 0.077:0.088:0.09:1:0.375:0.354:0.04 with a molecular weight of 33203 Da (Mw). AMC polysaccharides strikingly reversed d-galactose-induced changes in mice, including upregulated phosphatidylinositol 3-kinase (PI3K), Akt, nuclear factor-erythroid 2-related factor 2 (Nrf2), forkhead box O3a (FOXO3a), and hemeoxygenase-1 (HO-1) mRNA expression, raised Bcl-2/Bax ratio, downregulated caspase-3 mRNA expression, enhanced Akt, phosphorylation of Akt (p-Akt), Nrf2 and HO-1 protein expression, decreased caspase-3, and Bax protein expression. Conclusion: AMC polysaccharides attenuated d-galactose-induced oxidative stress and cell apoptosis by activating the PI3K/AKT pathway, which might in part contributed to their anti-aging activity.


2013 ◽  
Vol 64 (1) ◽  
pp. 87-97 ◽  
Author(s):  
Huangyuan Li ◽  
Siying Wu ◽  
Junnian Chen ◽  
Bo Wang ◽  
Nian Shi

Transcription factor NF-E2-related factor 2 (Nrf2) is important for cell protection against chemical-induced oxidative stress. Previously, we have reported that in PC12 cells, Nrf2 can be triggered by deltamethrin (DM), a commonly used pyrethroid insecticide. Molecular mechanisms behind Nrf2 activation by DM are still unclear. Here we studied the effects of cell glutathione (GSH) depletion on Nrf2 activation by DM. We found that DM enhanced Nrf2 expression at the mRNA and protein levels and increased nuclear Nrf2 levels. Activation of Nrf2 was associated with activation of its downstream targets, such as heme oxygenase-1 (HO-1) and glutamate cysteine ligase catalytic subunit (GCLC). In contrast, DL-buthionine-[S,R]- sulfoximine (BSO), a known GSH-depleting agent, did not increase Nrf2 protein expression or cause its nuclear accumulation. However, pre-treatment with BSO triggered mRNA expression of HO-1 and GCLC. Furthermore, BSO pre-treatment suppressed DM-induced Nrf2 upregulation and activation and lowered mRNA expression of HO-1 and GCLC upon DM treatment. These data demonstrate that GSH depletion is not necessary for the activation of Nrf2/ARE by DM in PC12 cells, and that GCLC and HO-1 expression can increase through other signalling pathways.


Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 10 ◽  
Author(s):  
Wafa A. AL-Megrin ◽  
Afrah F. Alkhuriji ◽  
Al Omar S. Yousef ◽  
Dina M. Metwally ◽  
Ola A. Habotta ◽  
...  

The abundant use of lead (Pb; toxic heavy metal) worldwide has increased occupational and ecosystem exposure, with subsequent negative health effects. The flavonoid luteolin (LUT) found in many natural foodstuffs possesses antioxidant and anti-inflammatory properties. Herein, we hypothesized that LUT could mitigate liver damage induced by exposure to lead acetate (PbAc). Male Wistar rats were allocated to four groups: control group received normal saline, LUT-treated group (50 mg/kg, oral, daily), PbAc-treated group (20 mg/kg, i.p., daily), and LUT+PbAc-treated group (received the aforementioned doses via the respective routes of administration); the rats were treated for 7 days. The results revealed that PbAc exposure significantly increased hepatic Pb residue and serum activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin value. Oxidative reactions were observed in the liver tissue following PbAc intoxication, characterized by the depletion and downregulation of antioxidant proteins (glutathione, glutathione reductase, glutathione peroxidase, superoxide dismutase, catalase, nuclear factor erythroid 2-related factor 2, and heme oxygenase-1), and an increase in oxidants (malondialdehyde and nitric oxide). Additionally, PbAc increased the release and expression of the pro-inflammatory cytokines (tumor necrosis factor alpha and interleukin-1 beta), inducible nitric oxide synthase, and nuclear factor kappa B. Moreover, PbAc enhanced hepatocyte loss by increasing the expression of pro-apoptotic proteins (Bax and caspase-3) and downregulating the anti-apoptotic protein (Bcl-2). The changes in the aforementioned parameters were further confirmed by noticeable histopathological lesions. LUT supplementation significantly reversed all of the tested parameters in comparison with the PbAc-exposed group. In conclusion, our findings describe the potential mechanisms involved in the alleviation of PbAc-induced liver injury by luteolin via its potent anti-inflammatory, antioxidant, and anti-apoptotic properties.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Mario Negrette-Guzmán ◽  
Wylly Ramsés García-Niño ◽  
Edilia Tapia ◽  
Cecilia Zazueta ◽  
Sara Huerta-Yepez ◽  
...  

It has been shown that curcumin (CUR), a polyphenol derived fromCurcuma longa, exerts a protective effect against gentamicin- (GM-) induced nephrotoxicity in rats, associated with a preservation of the antioxidant status. Although mitochondrial dysfunction is a hallmark in the GM-induced renal injury, the role of CUR in mitochondrial protection has not been studied. In this work, LLC-PK1 cells were preincubated 24 h with CUR and then coincubated 48 h with CUR and 8 mM GM. Treatment with CUR attenuated GM-induced drop in cell viability and led to an increase in nuclear factor (erythroid-2)-related factor 2 (Nrf2) nuclear accumulation and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) cell expression attenuating GM-induced losses in these proteins.In vivo, Wistar rats were injected subcutaneously with GM (75 mg/Kg/12 h) during 7 days to develop kidney mitochondrial alterations. CUR (400 mg/Kg/day) was administered orally 5 days before and during the GM exposure. The GM-induced mitochondrial alterations in ultrastructure and bioenergetics as well as decrease in activities of respiratory complexes I and IV and induction of calcium-dependent permeability transition were mostly attenuated by CUR. Protection of CUR against GM-induced nephrotoxicity could be in part mediated by maintenance of mitochondrial functions and biogenesis with some participation of the nuclear factor Nrf2.


2013 ◽  
Vol 32 (2) ◽  
pp. 146-151
Author(s):  
Xiaojuan Yin ◽  
Yan Wang ◽  
Lu Xie ◽  
Xiangyong Kong ◽  
Chunzhi Wang ◽  
...  

Summary Background: The aim of this study was to investigate the role of pulmonary surfactant-associated protein B (SP-B) expression in the pathogenesis of neonatal respiratory distress syndrome (RDS) via detecting the protein and mRNA expression of SP-B. Methods: A total of 60 unrelated neonates who died of RDS were chosen as the RDS group and then subgrouped into ≤32 weeks group, 32∼37 weeks group and ≥37 weeks group (n=20). Sixty neonates who died of other diseases were enrolled as controls and subdivided into 3 matched groups based on the gestational age. Western blot assay and RT-PCR were employed. Results: In the RDS group, SP-B protein expression was reduced or deficient in 8 neonates of which 6 had no SP-B protein expression. In the control group, only 1 had reduced SP-B protein expression. The reduced or deficient SP-B protein expression in 9 neonates of both groups was noted in the ≥37 weeks group. In the RDS group, the SP-B mRNA expression was significantly lower than that in the control group. In the ≤37 weeks group, SP-B mRNA expression was comparable between the RDS group and control group. In the 32∼37 weeks group, the SP-B mRNA expression in the RDS group was significantly reduced when compared with the control group. In the ≥37 weeks group, the SP-B mRNA expression in the RDS group was dramatically lower than that in the control group. Conclusions: Alteration of SP-B expression is present at transcriptional and translational levels. Reduction of SP-B mRNA and protein expression is involved in the pathogenesis of RDS.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 977
Author(s):  
Nancy S. Younis ◽  
Mohamed S. Abduldaium ◽  
Maged E. Mohamed

Background: Myocardial infarction (MI) is still a major contributor to mortality worldwide, and therefore, searching for new drugs is an urgent priority. Natural products are a renewable source for medicinally and pharmacologically active molecules. The objective of this study was to explore the potential of geraniol, a monoterpene alcohol, to protect against MI. Methods: Five groups of Wister rats were used: a control group; a group treated only with geraniol; a group treated only with isoproterenol, to induce MI; and two groups pretreated with geraniol (100 or 200 mg/kg, respectively) for 14 days and challenged with isoproterenol on the 13th and 14th days. Several parameters were measured including electrocardiogram (ECG), cardiac markers, the expression of Kelch-like ECH-associated protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), and other downstream antioxidant enzymes, as well as the expression of phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and other downstream apoptotic and inflammatory mediators. Results: Geraniol treatment reduced the size of the infarct region, attenuated the levels of cardiac indicators, and diminished myocardial necrosis and immune cell infiltration. Geraniol treatment also activated the Keap1/Nrf2/heme oxygenase-1 (HO-1) pathway, increased antioxidant enzyme activities, modulated the PI3K/Akt/mTOR pathway, and ameliorated myocardial autophagy, inflammation, and apoptosis. Conclusion: Geraniol may possess a protective effect against MI through moderating MI-induced myocardial oxidative stress (glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST), and Keap1/Nrf2 pathway), inflammation (IL-1β, IL-6, TNF-α, and Nuclear factor-κB (NF-κB)), apoptosis (caspase-3, caspase-9, Bcl2, and Bax), and autophagy (PI3K/Akt/mTOR pathway).


2021 ◽  
pp. 096032712110356
Author(s):  
Ozlem Delen ◽  
Yesim H Uz

The aim of the study was to investigate the protective effect of pyrrolidine dithiocarbamate (PDTC) against methotrexate (MTX)-induced testicular damage in rats. Forty Wistar albino male rats were divided into equally four groups: Control group (saline solution, IP), PDTC group (100 mg/kg PDTC,IP, 10 days), MTX group (20 mg/kg MTX, IP, single dose, on the 6th day) and MTX + PDTC group (100 mg/kg PDTC, IP, 10 days and 20 mg/kg MTX, IP, single dose, on the 6th day). After 10 days, testicular tissues were excised for morphometric, histological and immunohistochemical evaluations. Serum testosterone, follicle stimulating hormone (FSH), luteinizing hormone (LH) and prokineticin 2 (PK2) levels were determined. Body and testicular weights were measured. Testicular damage was assessed by histological evaluation. Nuclear factor kappa B (NFkB), nuclear factor erythroid 2 related factor 2 (Nrf2) and PK2 immunoreactivities were evaluated by HSCORE. Body and testicular weights, serum FSH, LH, testosterone levels, seminiferous tubule diameter and germinal epithelial thickness were significantly decreased in the MTX group. However, serum PK2 level, histologically damaged seminiferous tubules and interstitial field width were significantly increased. Additionally, there was an increase in NFkB and PK2 immunoreactivity, whereas there was a significant decrease in Nrf2 immunoreactivity. PDTC significantly improved hormonal, morphometric, histological and immunohistochemical findings. Taken together, we conclude that PDTC may reduce MTX-induced testicular damage via NFkB, Nrf2 and PK2 signaling pathways.


2017 ◽  
Vol 20 (5) ◽  
pp. 389-394 ◽  
Author(s):  
Chenyu Gou ◽  
Xiangzhen Liu ◽  
Xiaomei Shi ◽  
Hanjing Chai ◽  
Zhi-ming He ◽  
...  

CDKN1C and KCNQ1OT1 are imprinted genes that might be potential regulators of placental development. This study investigated placental expressions of CDKN1C and KCNQ1OT1 in monozygotic twins with and without selective intrauterine growth restriction (sIUGR). Seventeen sIUGR and fifteen normal monozygotic(MZ) twin pairs were examined. Placental mRNA expressions of CDKN1C and KCNQ1OT1 were detected by real-time fluorescent quantitative PCR. CDKN1C protein expression was detected by immunohistochemical assay and Western-blotting. In the sIUGR group, smaller fetuses had a smaller share of the placenta, and CDKN1C protein expression was significantly increased while KCNQ1OT1 mRNA expression was significantly decreased. The CDKN1C/KCNQ1OT1 mRNA ratio was lower in the larger fetus than in the smaller fetus (p < .05). In the control group, CDKN1C protein expression showed no difference between larger and smaller fetuses, while KCNQ1OT1 mRNA expression was significantly lower in the larger fetus, and the CDKN1C/KCNQ1OT1 mRNA ratio was higher in the larger fetus than in the smaller fetus (p < .05). Our findings showed that pathogenesis of sIUGR may be related to the co-effect of the up-regulated protein expression of CDKN1C and down-regulated mRNA expression of KCNQ1OT1 in the placenta.


Sign in / Sign up

Export Citation Format

Share Document