scholarly journals Exacerbated Age-Related Hippocampal Alterations of Microglia Morphology, ß-Amyloid and Lipofuscin Deposition and Presenilin Overexpression in Per1−/−-Mice

Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1330
Author(s):  
Jan Hendrik Börner ◽  
Oliver Rawashdeh ◽  
Abdelhaq Rami

In humans, alterations of circadian rhythms and autophagy are linked to metabolic, cardiovascular and neurological dysfunction. Autophagy constitutes a specific form of cell recycling in many eukaryotic cells. Aging is the principal risk factor for the development of neurodegenerative diseases. Thus, we assume that both the circadian clock and autophagy are indispensable to counteract aging. We have previously shown that the hippocampus of Per1−/−-mice exhibits a reduced autophagy and higher neuronal susceptibility to ischemic insults compared to wild type (WT). Therefore, we chose to study the link between aging and loss of clock gene Per1−/−-mice. Young and aged C3H- and Per1−/−-mice were used as models to analyze the hippocampal distribution of Aβ42, lipofuscin, presenilin, microglia, synaptophysin and doublecortin. We detected several changes in the hippocampus of aged Per1−/−-mice compared to their wild type littermates. Our results show significant alterations of microglia morphology, an increase in Aβ42 deposition, overexpression of presenilin, decrease in synaptophysin levels and massive accumulation of lipofuscin in the hippocampus of 24-month-old Per1−/−-mice, without alteration of adult neurogenesis. We suggest that the marked lipofuscin accumulation, Aβ42 deposition, and overexpression of presenilin-2 observed in our experiments may be some of the consequences of the slowed autophagy in the hippocampus of aged Per1−/−-mice. This may lead during aging to excessive accumulation of misfolded proteins which may, consequently, result in higher neuronal vulnerability.

2021 ◽  
Vol 22 (3) ◽  
pp. 1276
Author(s):  
Michihiro Hashimoto ◽  
Ayumi Goto ◽  
Yuki Endo ◽  
Masataka Sugimoto ◽  
Jun Ueda ◽  
...  

Cellular repressor of E1A-stimulated genes 1 (CREG1) is a secreted glycoprotein that accelerates p16-dependent cellular senescence in vitro. We recently reported the ability of CREG1 to stimulate brown adipogenesis using adipocyte P2-CREG1-transgenic (Tg) mice; however, little is known about the effect of CREG1 on aging-associated phenotypes. In this study, we investigated the effects of CREG1 on age-related obesity and renal dysfunction in Tg mice. Increased brown fat formation was detected in aged Tg mice, in which age-associated metabolic phenotypes such as body weight gain and increases in blood glucose were improved compared with those in wild-type (WT) mice. Blood CREG1 levels increased significantly in WT mice with age, whereas the age-related increase was suppressed, and its levels were reduced, in the livers and kidneys of Tg mice relative to those in WT mice at 25 months. Intriguingly, the mRNA levels of Ink4a, Arf, and senescence-associated secretory phenotype (SASP)-related genes and p38MAPK activity were significantly lowered in the aged kidneys of Tg mice, in which the morphological abnormalities of glomeruli as well as filtering function seen in WT kidneys were alleviated. These results suggest the involvement of CREG1 in kidney aging and its potential as a target for improving age-related renal dysfunction.


2015 ◽  
Vol 67 (6) ◽  
pp. 1510-1518
Author(s):  
S.A. Headley ◽  
T.R. Santos ◽  
L. Bodnar ◽  
J.P.E. Saut ◽  
A.P. Silva ◽  
...  

This study investigated the occurrence of canine distemper virus (CDV) by evaluating the presence of viral RNA within urine samples of dogs from Uberlândia, MG, with clinical manifestations suggestive of infection by CDV by targeting the CDV N gene. Of the clinical samples collected ( n =33), CDV viruria was detected in 45.5%. Five dogs died spontaneously; all had characteristic CDV-associated histopathological alterations and demonstrated CDV viruria. Statistical analyses revealed that the age, gender, breed, or the organ system of the dog affected had no influence on the occurrence of canine distemper. Myoclonus and motor incoordination were the most significant neurological manifestations observed. A direct association was observed between keratoconjunctivitis and dogs with CDV viruria. These findings suggest that CDV viruria in symptomatic dogs might not be age related, and that symptomatic dogs can demonstrate clinical manifestations attributed to CDV without viruria identified by RT-PCR. Additionally, the results of the sequence identities analysed have suggested that all Brazilian wild-type strains of CDV currently identified are closely related and probably originated from the same lineage of CDV. Nevertheless, phylogenetic analyses suggest that there are different clusters of wild-type strains of CDV circulating within urban canine populations in Brazil.


2018 ◽  
Vol 75 (6) ◽  
pp. 1042-1049
Author(s):  
Seongjoon Park ◽  
Erkhembayar Nayantai ◽  
Toshimitsu Komatsu ◽  
Hiroko Hayashi ◽  
Ryoichi Mori ◽  
...  

Abstract The orexigenic hormone neuropeptide Y (NPY) plays a pivotal role in the peripheral regulation of fat metabolism. However, the mechanisms underlying the effects of sex on NPY function have not been extensively analyzed. In this study, we examined the effects of NPY deficiency on fat metabolism in male and female mice. Body weight was slightly decreased, whereas white adipose tissue (WAT) mass was significantly decreased as the thermogenic program was upregulated in NPY-/- female mice compared with that in wild-type mice; these factors were not altered in response to NPY deficiency in male mice. Moreover, lack of NPY resulted in an increase in luteinizing hormone (LH) expression in the pituitary gland, with concomitant activation of the estradiol-mediated thermogenic program in inguinal WAT, and alleviated age-related modification of adiposity in female mice. Taken together, these data revealed a novel intracellular mechanism of NPY in the regulation of fat metabolism and highlighted the sexual dimorphism of NPY as a promising target for drug development to reduce postmenopausal adiposity.


2018 ◽  
Vol 9 (1) ◽  
pp. 190-202 ◽  
Author(s):  
Leonidas Chouliaras ◽  
Roy Lardenoije ◽  
Gunter Kenis ◽  
Diego Mastroeni ◽  
Patrick R. Hof ◽  
...  

Abstract Brain aging has been associated with aberrant DNA methylation patterns, and changes in the levels of DNA methylation and associated markers have been observed in the brains of Alzheimer’s disease (AD) patients. DNA hydroxymethylation, however, has been sparsely investigated in aging and AD. We have previously reported robust decreases in 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in the hippocampus of AD patients compared to non-demented controls. In the present study, we investigated 3- and 9-month-old APPswe/PS1ΔE9 transgenic and wild-type mice for possible age-related alterations in 5-mC and 5-hmC levels in three hippocampal sub-regions using quantitative immunohistochemistry. While age-related increases in levels of both 5-mC and 5-hmC were found in wild-type mice, APPswe/PS1ΔE9 mice showed decreased levels of 5-mC at 9 months of age and no age-related changes in 5-hmC throughout the hippocampus. Altogether, these findings suggest that aberrant amyloid processing impact on the balance between DNA methylation and hydroxymethylation in the hippocampus during aging in mice.


2012 ◽  
Vol 23 (6) ◽  
pp. 1010-1023 ◽  
Author(s):  
Lukas Stiburek ◽  
Jana Cesnekova ◽  
Olga Kostkova ◽  
Daniela Fornuskova ◽  
Kamila Vinsova ◽  
...  

Mitochondrial ATPases associated with diverse cellular activities (AAA) proteases are involved in the quality control and processing of inner-membrane proteins. Here we investigate the cellular activities of YME1L, the human orthologue of the Yme1 subunit of the yeast i‑AAA complex, using stable short hairpin RNA knockdown and expression experiments. Human YME1L is shown to be an integral membrane protein that exposes its carboxy-terminus to the intermembrane space and exists in several complexes of 600–1100 kDa. The stable knockdown of YME1L in human embryonic kidney 293 cells led to impaired cell proliferation and apoptotic resistance, altered cristae morphology, diminished rotenone-sensitive respiration, and increased susceptibility to mitochondrial membrane protein carbonylation. Depletion of YME1L led to excessive accumulation of nonassembled respiratory chain subunits (Ndufb6, ND1, and Cox4) in the inner membrane. This was due to a lack of YME1L proteolytic activity, since the excessive accumulation of subunits was reversed by overexpression of wild-type YME1L but not a proteolytically inactive YME1L variant. Similarly, the expression of wild-type YME1L restored the lamellar cristae morphology of YME1L-deficient mitochondria. Our results demonstrate the importance of mitochondrial inner-membrane proteostasis to both mitochondrial and cellular function and integrity and reveal a novel role for YME1L in the proteolytic regulation of respiratory chain biogenesis.


2011 ◽  
pp. P2-351-P2-351
Author(s):  
Lucila Sackmann Sala ◽  
Clare B Vesel ◽  
Ellen R Lubbers ◽  
Rachel D Munn ◽  
Katie M Troike ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4317
Author(s):  
Yan-Xi Chen ◽  
Phuong Thu Nguyen Le ◽  
Tsai-Teng Tzeng ◽  
Thu-Ha Tran ◽  
Anh Thuc Nguyen ◽  
...  

Declines in physiological functions are the predominant risk factors for age-related diseases, such as cancers and neurodegenerative diseases. Therefore, delaying the aging process is believed to be beneficial in preventing the onset of age-related diseases. Previous studies have demonstrated that Graptopetalum paraguayense (GP) extract inhibits liver cancer cell growth and reduces the pathological phenotypes of Alzheimer’s disease (AD) in patient IPS-derived neurons. Here, we show that GP extract suppresses β-amyloid pathology in SH-SYS5Y-APP695 cells and APP/PS1 mice. Moreover, AMP-activated protein kinase (AMPK) activity is enhanced by GP extract in U87 cells and APP/PS1 mice. Intriguingly, GP extract enhances autophagy in SH-SYS5Y-APP695 cells, U87 cells, and the nematode Caenorhabditis elegans, suggesting a conserved molecular mechanism by which GP extract might regulate autophagy. In agreement with its role as an autophagy activator, GP extract markedly diminishes mobility decline in polyglutamine Q35 mutants and aged wild-type N2 animals in C. elegans. Furthermore, GP extract significantly extends lifespan in C. elegans.


2020 ◽  
Author(s):  
Om Srivast ◽  
Kiran Srivast ◽  
Roy Joseph ◽  
Landon Wilson

Abstract We have generated two mouse models, in one by inserting the human lens αAN101D transgene in CRYαAN101D mice, and in the other by inserting human wild-type αA-transgene in CRYαAWT mice. The CRYαAN101D mice developed cortical cataract at about 7-months of age relative to CRYαAWT mice. The objective of the study was to determine the following relative changes in the lenses of CRYαAN101D- vs. CRYαAWT mice: age-related changes with specific emphasis on protein insolubilization, relative membrane-association of αAN101D vs. WTαA proteins, and changes in intracellular ionic imbalance and membrane organization. Methods: Lenses of varying ages from CRYαAWT and CRYαAN101D mice were compared for an age-related protein insolubilization. The relative lens membrane-association of the αAN101D- and WTαA proteins in the two types of mice was determined by immunohistochemical-, immunogold-labeling-, and western blot analyses. The relative levels of membrane-binding of recombinant αAN101D- and WTαA proteins was determined by an in vitro assay, and the levels of intracellular Ca2+ uptake and Na, K-ATPase mRNA were determined in the cultured epithelial cells from lenses of the two types of mice.Results: Compared to the lenses of CRYαAWT, the lenses of CRYαAN101D mice exhibited: (A) An increase in age-related protein insolubilization beginning at about 4-months of age. (B) A greater lens membrane-association of αAN101D- relative to WTαA protein during immunogold-labeling- and western blot analyses, including relatively a greater membrane swelling in the CRYαAN101D lenses. (C) During in vitro assay, the greater levels of binding αAN101D- relative to WTαA protein to membranes was observed. (D) The 75% lower level of Na, K-ATPase mRNA but 1.5X greater Ca2+ uptake were observed in cultured lens epithelial cells of CRYαAN101D- than those of CRYαAWT mice. Conclusions: The results show that an increased lens membrane association of αAN101D--relative WTαA protein in CRYαAN101D mice than CRYαAWT mice occurs, which causes intracellular ionic imbalance, and in turn, membrane swelling that potentially leads to cortical opacity.


2011 ◽  
Vol 301 (4) ◽  
pp. R1032-R1043 ◽  
Author(s):  
Allison Brager ◽  
Rebecca A. Prosser ◽  
J. David Glass

Acamprosate suppresses alcohol intake and craving in recovering alcoholics; however, the central sites of its action are unclear. To approach this question, brain regions responsive to acamprosate were mapped using acamprosate microimplants targeted to brain reward and circadian areas implicated in alcohol dependence. mPer2 mutant mice with nonfunctional mPer2, a circadian clock gene that gates endogenous timekeeping, were included, owing to their high levels of ethanol intake and preference. Male wild-type (WT) and mPer2 mutant mice received free-choice (15%) ethanol/water for 3 wk. The ethanol was withdrawn for 3 wk and then reintroduced to facilitate relapse. Four days before ethanol reintroduction, mice received bilateral blank or acamprosate-containing microimplants releasing ∼50 ng/day into reward [ventral tegmental (VTA), peduculopontine tegmentum (PPT), and nucleus accumbens (NA)] and circadian [intergeniculate leaflet (IGL) and suprachiasmatic nucleus (SCN)] areas. The hippocampus was also targeted. Circadian locomotor activity was measured throughout. Ethanol intake and preference were greater in mPer2 mutants than in wild-type (WT) mice (27 g·kg−1·day−1 vs. 13 g·kg−1·day−1 and 70% vs. 50%, respectively; both, P < 0.05). In WTs, acamprosate in all areas, except hippocampus, suppressed ethanol intake and preference (by 40–60%) during ethanol reintroduction. In mPer2 mutants, acamprosate in the VTA, PPT, and SCN suppressed ethanol intake and preference by 20–30%. These data are evidence that acamprosate's suppression of ethanol intake and preference are manifest through actions within major reward and circadian sites.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Daniel N Meijles ◽  
Imad Al Ghouleh ◽  
Sanghamitra Sahoo ◽  
Jefferson H Amaral ◽  
Heather Knupp ◽  
...  

Organismal aging represents an independent risk factor underlying many vascular diseases, including systemic and pulmonary hypertension, and atherosclerosis. While the mechanisms driving aging are largely elusive, a steady persistent increase in tissue oxidative stress has been associated with senescence. Previously we showed TSP1 elicits NADPH oxidase (Nox)-dependent vascular smooth muscle cell oxidative stress. However mechanisms by which TSP1 affects endothelial redox biology are unknown. Here, we tested the hypothesis that TSP1 induces endothelial oxidative stress-linked senescence in aging. Using rapid autopsy disease-free human pulmonary (PA) artery, we identified a significant positive correlation between age, protein levels of TSP1, Nox1 and the cell-cycle repressor p21cip (p<0.05). Age also positively associated with increased Amplex Red-detected PA hydrogen peroxide levels (p<0.05). Moreover, treatment of human PA endothelial cells (HPAEC) with TSP1 (2.2nM; 24h) increased expression (~1.9 fold; p<0.05) and activation of Nox1 (~1.7 fold; p<0.05) compared to control, as assessed by Western blot and SOD-inhibitable cytochrome c reduction. Western blotting and immunofluorescence showed a TSP1-mediated increase in p53 activation, indicative of the DNA damage response. Moreover, TSP1 significantly increased HPAEC senescence in a p53/p21cip/Rb-dependent manner, as assessed by immunofluorescent detection of subcellular localization and senescence-associated β-galactosidase staining. To explore this pathway in vivo, middle-aged (8-10 month) wild-type and TSP1-null mice were utilized. In the TSP1-null, reduced lung senescence, oxidative stress, Nox1 levels and p21cip expression were observed compared to wild-type supporting findings in human samples and cell experiments. Finally, prophylactic treatment with specific Nox1 inhibitor NoxA1ds (10μM) attenuated TSP1-induced HPAEC ROS, p53 activation, p21cip expression and senescence. Taken together, our results provide molecular insight into the functional interplay between TSP1 and Nox1 in the regulation of endothelial senescence, with implications for molecular control of the aging process.


Sign in / Sign up

Export Citation Format

Share Document