scholarly journals Role of Food Antioxidants in Modulating Gut Microbial Communities: Novel Understandings in Intestinal Oxidative Stress Damage and Their Impact on Host Health

Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1563
Author(s):  
Muhammad Shahid Riaz Rajoka ◽  
Rohit Thirumdas ◽  
Hafiza Mahreen Mehwish ◽  
Muhammad Umair ◽  
Mohsin Khurshid ◽  
...  

Dietary components have an important role on the structure and function of host gut microbial communities. Even though, various dietary components, such as carbohydrates, fats, proteins, fibers, and vitamins, have been studied in depth for their effect on gut microbiomes, little attention has been paid regarding the impact of several food antioxidants on the gut microbiome. The long-term exposure to reactive oxygen species (ROS) can cause microbial dysbiosis which leads to numerous intestinal diseases such as microbiota dysbiosis, intestinal injury, colorectal cancers, enteric infections, and inflammatory bowel diseases. Recently, it has been shown that the food derived antioxidant compounds might protect the host from intestinal oxidative stress via modulating the composition of beneficial microbial species in the gut. The present review summarizes the impact of food antioxidants including antioxidant vitamins, dietary polyphenols, carotenoids, and bioactive peptides on the structure as well as function of host gut microbial communities. Several in vitro, animal model, and clinical studies indicates that food antioxidants might modify the host gut microbial communities and their health status. However, still further clarification is needed as to whether changes in certain microbial species caused by food additives may lead to changes in metabolism and immune function.

Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 255
Author(s):  
Wilmer Cuervo ◽  
Lorraine M. Sordillo ◽  
Angel Abuelo

Dairy calves are unable to mount an effective immune response during their first weeks of life, which contributes to increased disease susceptibility during this period. Oxidative stress (OS) diminishes the immune cell capabilities of humans and adult cows, and dairy calves also experience OS during their first month of life. However, the impact that OS may have on neonatal calf immunity remains unexplored. Thus, we aimed to evaluate the impact of OS on newborn calf lymphocyte functions. For this, we conducted two experiments. First, we assessed the association of OS status throughout the first month of age and the circulating concentrations of the cytokines interferon-gamma (IFN-γ) and interleukin (IL) 4, as well as the expression of cytokine-encoding genes IFNG, IL2, IL4, and IL10 in peripheral mononuclear blood cells (PBMCs) of 12 calves. Subsequently, we isolated PBMCs from another 6 neonatal calves to investigate in vitro the effect of OS on immune responses in terms of activation of lymphocytes, cytokine expression, and antibody production following stimulation with phorbol 12-myristate 13-acetate or bovine herpesvirus-1. The results were compared statistically through mixed models. Calves exposed to high OS status in their first month of age showed higher concentrations of IL-4 and expression of IL4 and IL10 and lower concentrations of IFN-γ and expression of IFNG and IL2 than calves exposed to lower OS. In vitro, OS reduced lymphocyte activation, production of antibodies, and protein and gene expression of key cytokines. Collectively, our results demonstrate that OS can compromise some immune responses of newborn calves. Hence, further studies are needed to explore the mechanisms of how OS affects the different lymphocyte subsets and the potential of ameliorating OS in newborn calves as a strategy to augment the functional capacity of calf immune cells, as well as enhance calves’ resistance to infections.


Author(s):  
Julian Alfke ◽  
Uta Kampermann ◽  
Svetlana Kalinina ◽  
Melanie Esselen

AbstractDietary polyphenols like epigallocatechin-3-gallate (EGCG)—which represents the most abundant flavan-3-ol in green tea—are subject of several studies regarding their bioactivity and health-related properties. On many occasions, cell culture or in vitro experiments form the basis of published data. Although the stability of these compounds is observed to be low, many reported effects are directly related to the parent compounds whereas the impact of EGCG degradation and autoxidation products is not yet understood and merely studied. EGCG autoxidation products like its dimers theasinensin A and D, “P2” and oolongtheanin are yet to be characterized in the same extent as their parental polyphenol. However, to investigate the bioactivity of autoxidation products—which would minimize the discrepancy between in vitro and in vivo data—isolation and structure elucidation techniques are urgently needed. In this study, a new protocol to acquire the dimers theasinensin A and D as well as oolongtheanin is depicted, including a variety of spectroscopic and quadrupole time-of-flight high-resolution mass spectrometric (qTOF-HRMS) data to characterize and assign these isolates. Through nuclear magnetic resonance (NMR) spectroscopy, polarimetry, and especially circular dichroism (CD) spectroscopy after enzymatic hydrolysis the complementary atropisomeric stereochemistry of the isolated theasinensins is illuminated and elucidated. Lastly, a direct comparison between the isolated EGCG autoxidation products and the monomer itself is carried out regarding their antioxidant properties featuring Trolox equivalent antioxidant capacity (TEAC) values. These findings help to characterize these products regarding their cellular effects and—which is of special interest in the flavonoid group—their redox properties.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3216
Author(s):  
Maryvonne Ardourel ◽  
Chloé Felgerolle ◽  
Arnaud Pâris ◽  
Niyazi Acar ◽  
Khaoula Ramchani Ben Othman ◽  
...  

To prevent ocular pathologies, new generation of dietary supplements have been commercially available. They consist of nutritional supplement mixing components known to provide antioxidative properties, such as unsaturated fatty acid, resveratrol or flavonoids. However, to date, only one preclinical study has evaluated the impact of a mixture mainly composed of those components (Nutrof Total®) on the retina and demonstrated that in vivo supplementation prevents the retina from structural and functional injuries induced by light. Considering the crucial role played by the glial Müller cells in the retina, particularly to regulate the glutamate cycle to prevent damage in oxidative stress conditions, we questioned the impact of this ocular supplement on the glutamate metabolic cycle. To this end, various molecular aspects associated with the glutamate/glutamine metabolism cycle in Müller cells were investigated on primary Müller cells cultures incubated, or not, with the commercially mix supplement before being subjected, or not, to oxidative conditions. Our results demonstrated that in vitro supplementation provides guidance of the glutamate/glutamine cycle in favor of glutamine synthesis. These results suggest that glutamine synthesis is a crucial cellular process of retinal protection against oxidative damages and could be a key step in the previous in vivo beneficial results provided by the dietary supplementation.


Marine Drugs ◽  
2019 ◽  
Vol 17 (9) ◽  
pp. 506 ◽  
Author(s):  
Gabriel Pereira Fidelis ◽  
Cynthia Haynara Ferreira Silva ◽  
Leonardo Thiago Duarte Barreto Nobre ◽  
Valquíria Pereira Medeiros ◽  
Hugo Alexandre Oliveira Rocha ◽  
...  

Some antioxidant compounds decrease the amount of intracellular reactive oxygen species (ROS) and consequently reduce the deleterious effects of ROS in osteoblasts. Thus, these compounds fight against osteoporosis. Brown seaweeds are a rich source of antioxidant fucose-containing sulfated polysaccharides (fucans and fucoidans). We obtained six fucoidans (FRFs)—F0.3, F0.5, F0.7, F1.0, F1.5, and F2.1—from Dictyota mertensii by proteolytic digestion followed by sequential acetone precipitation. Except for F0.3, all FRFs showed antioxidant activity in different in vitro tests. In pre- osteoblast-like cells (MC3T3-L1) exposed to H2O2-oxidative stress, caspase-3 and caspase-9 were activated, resulting in apoptosis of the cells. We also observed a decrease in superoxide dismutase (SOD) and alkaline phosphatase (ALP) activity. The antioxidant FRFs protected the cells from the oxidative damage caused by H2O2, decreasing intracellular ROS and caspase activation, and increasing SOD activity. The most effective protection against damage was provided by F0.7, F1.5, and F2.1. At 0.5 mg/mL, these FRFs also suppressed the H2O2-mediated inhibition of ALP activity. The data indicated that FRFs F0.7, F1.5, and F2.1 from D. mertensii were antioxidants that protected bone tissue from oxidative stress and could represent possible adjuvants for the treatment of bone fragility through counteracting oxidative phenomena.


2019 ◽  
Vol 21 (1) ◽  
pp. 146 ◽  
Author(s):  
Borkwei Ed Nignpense ◽  
Kenneth A. Chinkwo ◽  
Christopher L. Blanchard ◽  
Abishek B. Santhakumar

Platelets and platelet microparticles (PMPs) play a key role in the pathophysiology of vascular disorders such as coronary artery disease and stroke. In atherosclerosis, for example, the disruption of the plaque exposes endogenous agonists such as collagen, which activates platelets. Platelet hyper-activation and the high levels of PMPs generated in such situations pose a thrombotic risk that can lead to strokes or myocardial infarctions. Interestingly, dietary polyphenols are gaining much attention due to their potential to mimic the antiplatelet activity of treatment drugs such as aspirin and clopidogrel that target the glycoprotein VI (GPVI)–collagen and cyclooxygenease-1 (COX-1)–thromboxane platelet activation pathways respectively. Platelet function tests such as aggregometry and flow cytometry used to monitor the efficacy of antiplatelet drugs can also be used to assess the antiplatelet potential of dietary polyphenols. Despite the low bioavailability of polyphenols, several in vitro and dietary intervention studies have reported antiplatelet effects of polyphenols. This review presents a summary of platelet function in terms of aggregation, secretion, activation marker expression, and PMP release. Furthermore, the review will critically evaluate studies demonstrating the impact of polyphenols on aggregation and PMP release.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 985 ◽  
Author(s):  
Abdelhafid Nani ◽  
Babar Murtaza ◽  
Amira Sayed Khan ◽  
Naim Akhtar Khan ◽  
Aziz Hichami

Nutrition transition can be defined as shifts in food habits, and it is characterized by high-fat (chiefly saturated animal fat), hypercaloric and salty food consumption at the expense of dietary fibers, minerals and vitamins. Western dietary patterns serve as a model for studying the impact of nutrition transition on civilization diseases, such as obesity, which is commonly associated with oxidative stress and inflammation. In fact, reactive oxygen species (ROS) overproduction can be associated with nuclear factor-κB (NF-κB)-mediated inflammation in obesity. NF-κB regulates gene expression of several oxidant-responsive adipokines including tumor necrosis factor-α (TNF-α). Moreover, AMP-activated protein kinase (AMPK), which plays a pivotal role in energy homeostasis and in modulation of metabolic inflammation, can be downregulated by IκB kinase (IKK)-dependent TNF-α activation. On the other hand, adherence to a Mediterranean-style diet is highly encouraged because of its healthy dietary pattern, which includes antioxidant nutraceuticals such as polyphenols. Indeed, hydroxycinnamic derivatives, quercetin, resveratrol, oleuropein and hydroxytyrosol, which are well known for their antioxidant and anti-inflammatory activities, exert anti-obesity proprieties. In this review, we highlight the impact of the most common polyphenols from Mediterranean foods on molecular mechanisms that mediate obesity-related oxidative stress and inflammation. Hence, we discuss the effects of these polyphenols on a number of signaling pathways. We note that Mediterranean diet (MedDiet) dietary polyphenols can de-regulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and NF-κB-mediated oxidative stress, and metabolic inflammation. MedDiet polyphenols are also effective in upregulating downstream effectors of several proteins, chiefly AMPK.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Jingwen Fan ◽  
Qi Pan ◽  
Qun Gao ◽  
Wenqing Li ◽  
Fei Xiao ◽  
...  

Subclinical hypothyroidism (SCH) is associated with diabetic peripheral neuropathy (DPN); however, the mechanism underlying this association remains unknown. This study is aimed at examining neurofunctional and histopathological alterations in a type 2 diabetes (T2DM) mouse model of SCH and investigating the impact of thyroid-stimulating hormone (TSH) in an in vitro DPN cell model established using RSC96 cells under high glucose (HG) and palmitic acid (PA) stimulation. Our results indicated that T2DM, in combination with SCH, aggravated abnormal glucose and lipid metabolism in T2DM and dramatically destroyed the peripheral nervous system by increasing paw withdrawal latency, decreasing motor nerve conduction velocity, and exacerbating ultrastructural deterioration of the damaged sciatic nerve caused by diabetes. Furthermore, the results of our in vitro experiments showed that TSH intensified HG/PA-induced RSC96 cell damage by inducing oxidative stress, mitochondrial dysfunction, and apoptosis. More importantly, TSHR knockout or inhibition of PA-induced TSHR palmitoylation could alleviate the apoptosis induced by TSH. Overall, in this study, the novel mechanisms by which TSH, as an independent risk factor for DPN progression, aggravating Schwann cell apoptosis and demyelination, are elucidated. These findings indicate that TSHR could be a potential target for both the prevention and treatment of DPN and, possibly, other microvascular diseases, and have implication in the clinical management of patients with DPN.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5786
Author(s):  
Cristina Arteaga ◽  
Nuria Boix ◽  
Elisabet Teixido ◽  
Fernanda Marizande ◽  
Santiago Cadena ◽  
...  

The antioxidant activity of food compounds is one of the properties generating the most interest, due to its health benefits and correlation with the prevention of chronic disease. This activity is usually measured using in vitro assays, which cannot predict in vivo effects or mechanisms of action. The objective of this study was to evaluate the in vivo protective effects of six phenolic compounds (naringenin, apigenin, rutin, oleuropein, chlorogenic acid, and curcumin) and three carotenoids (lycopene B, β-carotene, and astaxanthin) naturally present in foods using a zebrafish embryo model. The zebrafish embryo was pretreated with each of the nine antioxidant compounds and then exposed to tert-butyl hydroperoxide (tBOOH), a known inducer of oxidative stress in zebrafish. Significant differences were determined by comparing the concentration-response of the tBOOH induced lethality and dysmorphogenesis against the pretreated embryos with the antioxidant compounds. A protective effect of each compound, except β-carotene, against oxidative-stress-induced lethality was found. Furthermore, apigenin, rutin, and curcumin also showed protective effects against dysmorphogenesis. On the other hand, β-carotene exhibited increased lethality and dysmorphogenesis compared to the tBOOH treatment alone.


2020 ◽  
Author(s):  
Donyez Frikha Dammak ◽  
Hajer Ben Saad ◽  
Emna Bouattour ◽  
Ons Boudawara ◽  
Raoudha Mezghani Jarraya

Abstract Background Hypercholesterolemia is a major risk factor for the development of atherosclerosis and endothelial dysfunction. Methods The present study investigates the possible mechanism of Echinops spinosissimus Turra subsp. spinosus ( E. s. spinosus ) flower on the high cholesterol diet. Results Our in vitro results demonstrated the richness of E.s. spinosus flower in antioxidant compounds, and its antioxidant activities. The co-administration of E.s. spinosus (100 or 200 mg/kg/day) with high-fat diet attenuated hepatotoxicity as monitored by the improvement of oxidative stress biomarkers and plasma lipid and liver parameters, when compared to the hypercholesterolemic mice. Atherogenic index and body weight were also reduced markedly, compared to control mice. These results were confirmed by the improvement of histological changes and DNA damage. Conclusion These data indicate that E.s. spinosus flower reduces the hypercholesterolemia risk and atherogenic properties of dietary cholesterol. Its hypocholesterolemic effect may be due to its antioxidant activities and its richness in bioactive molecule.


Author(s):  
Eva Tvrdá ◽  
Eva Tušimová ◽  
Katarína Zbyňovská ◽  
Tomáš Jambor ◽  
Norbert Lukáč

As spermatozoa are highly vulnerable to oxidative stress development, in vitro antioxidants offer an additional line of defense to the male reproductive system against oxidative insults. α‑tocopherol (α-TOC) is the most abundant form of vitamin E identified in the seminal plasma and spermatozoa membranes, being able to terminate numerous oxidative chain reactions causing substantial damage to biomolecules vital for sperm survival. This study was designed to shed more light on the in vitro effects of α‑tocopherol with respect to the vitality and intracellular antioxidant profile of bovine spermatozoa subjected to ferrous ascorbate-induced oxidative stress. Spermatozoa were washed out from 50 bovine ejaculates, suspended in 2.9 % sodium citrate and subjected to α-TOC treatment (10, 50, 100 and 500 μmol/L) in the presence or absence of ferrous ascorbate (FeAA; 150 μmol/L FeSO4 and 750 μmol/L ascorbic acid) during a 6h in vitro culture. Spermatozoa motion parameters were assessed using the SpermVision™ computer-aided sperm analysis (CASA) system. Cell viability was examined with the metabolic activity (MTT) assay, and the nitroblue-tetrazolium (NBT) test was applied to quantify the intracellular superoxide formation. Cell lysates were prepared at the end of the experiments in order to assess the intracellular activity of superoxide dismutase (SOD), catalase (CAT), as well as glutathione (GSH) and malondialdehyde (MDA) concentrations. Treatment with FeAA reduced both spermatozoa motility parameters (P < 0.001) as well as viability (P < 0.05 with respect to Time 0 h; P < 0.01 in case of Time 2 h and P < 0.001 in relation to Time 6 h), decreased the antioxidant parameters of the samples (P < 0.001 in case of SOD; P < 0.01 with respect to CAT and GSH) but increased the superoxide production (P < 0.01 in case of Time 0h and P < 0.001 with respect to Times 2 h and 6 h) and lipid peroxidation (P < 0.001). α‑TOC administration resulted in a preservation of the spermatozoa motility characteristics (P < 0.001 with respect to 500 μmol/L α-TOC), viability (P < 0.001 in case of 500 μmol/L α-TOC and P < 0.05 with respect to 100 μmol/L α-TOC) and antioxidant profile (P < 0.01 related to the impact of 500 μmol/L α-TOC on the SOD activity; P < 0.05 in relation to CAT; P < 0.01 with respect GSH; 100-500 μmol/L α-TOC), with 500 μmol/L α-TOC being the most effective. Our results suggest that α‑tocopherol possesses significant antioxidant properties that may prevent the deleterious effects caused by free radicals to spermatozoa, and extend the fertilization potential of male reproductive cells.


Sign in / Sign up

Export Citation Format

Share Document