scholarly journals Antioxidant and Anti-Inflammatory Potential of Polyphenols Contained in Mediterranean Diet in Obesity: Molecular Mechanisms

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 985 ◽  
Author(s):  
Abdelhafid Nani ◽  
Babar Murtaza ◽  
Amira Sayed Khan ◽  
Naim Akhtar Khan ◽  
Aziz Hichami

Nutrition transition can be defined as shifts in food habits, and it is characterized by high-fat (chiefly saturated animal fat), hypercaloric and salty food consumption at the expense of dietary fibers, minerals and vitamins. Western dietary patterns serve as a model for studying the impact of nutrition transition on civilization diseases, such as obesity, which is commonly associated with oxidative stress and inflammation. In fact, reactive oxygen species (ROS) overproduction can be associated with nuclear factor-κB (NF-κB)-mediated inflammation in obesity. NF-κB regulates gene expression of several oxidant-responsive adipokines including tumor necrosis factor-α (TNF-α). Moreover, AMP-activated protein kinase (AMPK), which plays a pivotal role in energy homeostasis and in modulation of metabolic inflammation, can be downregulated by IκB kinase (IKK)-dependent TNF-α activation. On the other hand, adherence to a Mediterranean-style diet is highly encouraged because of its healthy dietary pattern, which includes antioxidant nutraceuticals such as polyphenols. Indeed, hydroxycinnamic derivatives, quercetin, resveratrol, oleuropein and hydroxytyrosol, which are well known for their antioxidant and anti-inflammatory activities, exert anti-obesity proprieties. In this review, we highlight the impact of the most common polyphenols from Mediterranean foods on molecular mechanisms that mediate obesity-related oxidative stress and inflammation. Hence, we discuss the effects of these polyphenols on a number of signaling pathways. We note that Mediterranean diet (MedDiet) dietary polyphenols can de-regulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and NF-κB-mediated oxidative stress, and metabolic inflammation. MedDiet polyphenols are also effective in upregulating downstream effectors of several proteins, chiefly AMPK.

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 862
Author(s):  
Mireia Urpi-Sarda ◽  
Rosa Casas ◽  
Emilio Sacanella ◽  
Dolores Corella ◽  
Cristina Andrés-Lacueva ◽  
...  

The intervention with the Mediterranean diet (MD) pattern has evidenced short-term anti-inflammatory effects, but little is known about its long-term anti-inflammatory properties at molecular level. This study aims to investigate the 3-year effect of MD interventions compared to low-fat diet (LFD) on changes on inflammatory biomarkers related to atherosclerosis in a free-living population with a high-risk of cardiovascular disease (CD). Participants (n = 285) in the PREDIMED trial were randomly assigned into three intervention groups: MD with extra-virgin olive oil (EVOO) or MD-Nuts, and a LFD. Fourteen plasma inflammatory biomarkers were determined by Luminex assays. An additional pilot study of gene expression (GE) was determined by RT-PCR in 35 participants. After 3 years, both MDs showed a significant reduction in the plasma levels of IL-1β, IL-6, IL-8, TNF-α, IFN-γ, hs-CRP, MCP-1, MIP-1β, RANTES, and ENA78 (p < 0.05; all). The decreased levels of IL-1β, IL-6, IL-8, and TNF-α after MD significantly differed from those in the LFD (p < 0.05). No significant changes were observed at the gene level after MD interventions, however, the GE of CXCR2 and CXCR3 tended to increase in the control LFD group (p = 0.09). This study supports the implementation of MD as a healthy long-term dietary pattern in the prevention of CD in populations at high cardiovascular risk.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1098
Author(s):  
Tania Carta ◽  
Elisabetta Razzuoli ◽  
Floriana Fruscione ◽  
Susanna Zinellu ◽  
Dionigia Meloni ◽  
...  

Macrophages are phagocytic cells involved in maintaining tissue homeostasis and defense against pathogens. Macrophages may be polarized into different functionally specialized subsets. M2c macrophages arise following stimulation with IL-10 or TGF-β and mediate anti-inflammatory and tissue repair functions. M2c macrophages remain poorly characterized in the pig, thus we investigated the impact of these regulatory cytokines on porcine monocyte-derived macrophages (moMΦ). The phenotype and functionality of these cells was characterized though confocal microscopy, flow cytometry, ELISA, and RT-qPCR. Both cytokines induced CD14 and MHC II DR down-regulation and reduced IL-6, TNF-α, and CD14 expression, suggestive of an anti-inflammatory phenotype. Interestingly, neither IL-10 or TGF-β were able to trigger IL-10 induction or release by moMΦ. Differences between these cytokines were observed: stimulation with IL-10, but not TGF-β, induced up-regulation of both CD16 and CD163 on moMΦ. In addition, IL-10 down-regulated expression of IL-1β and IL-12p40 4h post-stimulation and induced a stronger impairment of moMΦ ability to respond to either TLR2 or TLR4 agonists. Overall, our results provide an overview of porcine macrophage polarization by two immunosuppressive cytokines, revealing differences between IL-10 and TGF-β, and reporting some peculiarity of swine, which should be considered in translational studies.


2018 ◽  
Vol 51 (3) ◽  
pp. 1051-1068 ◽  
Author(s):  
Jèssica Latorre ◽  
José M. Moreno-Navarrete ◽  
Mónica Sabater ◽  
Maria Buxo ◽  
José I. Rodriguez-Hermosa ◽  
...  

Background/Aims: Obesity is characterized by the immune activation that eventually dampens insulin sensitivity and changes metabolism. This study explores the impact of different inflammatory/ anti-inflammatory paradigms on the expression of toll-like receptors (TLR) found in adipocyte cultures, adipose tissue, and blood. Methods: We evaluated by real time PCR the impact of acute surgery stress in vivo (adipose tissue) and macrophages (MCM) in vitro (adipocytes). Weight loss was chosen as an anti-inflammatory model, so TLR were analyzed in fat samples collected before and after bariatric surgery-induced weight loss. Associations with inflammatory and metabolic parameters were analyzed in non-obese and obese subjects, in parallel with gene expression measures taken in blood and isolated adipocytes/ stromal-vascular cells (SVC). Treatments with an agonist of TLR3 were conducted in human adipocyte cultures under normal conditions and upon conditions that simulated the chronic low-grade inflammatory state of obesity. Results: Surgery stress raised TLR1 and TLR8 in subcutaneous (SAT), and TLR2 in SAT and visceral (VAT) adipose tissue, while decreasing VAT TLR3 and TLR4. MCM led to increased TLR2 and diminished TLR3, TLR4, and TLR5 expressions in human adipocytes. The anti-inflammatory impact of weight loss was concomitant with decreased TLR1, TLR3, and TLR8 in SAT. Cross-sectional associations confirmed increased V/ SAT TLR1 and TLR8, and decreased TLR3 in obese patients, as compared with non-obese subjects. As expected, TLR were predominant in SVC and adipocyte precursor cells, even though expression of all of them but TLR8 (very low levels) was also found in ex vivo isolated and in vitro differentiated adipocytes. Among SVC, CD14+ macrophages showed increased TLR1, TLR2, and TLR7, but decreased TLR3 mRNA. The opposite patterns shown for TLR2 and TLR3 in V/ SAT, SVC, and inflamed adipocytes were observed in blood as well, being TLR3 more likely linked to lymphocyte instead of neutrophil counts. On the other hand, decreased TLR3 in adipocytes challenged with MCM dampened lipogenesis and the inflammatory response to Poly(I:C). Conclusion: Functional variations in the expression of TLR found in blood and hypertrophied fat depots, namely decreased TLR3 in lymphocytes and inflamed adipocytes, are linked to metabolic inflammation.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1991
Author(s):  
Janine Mett

Alzheimer’s disease (AD), the most common cause of dementia in the elderly population, is closely linked to a dysregulated cerebral lipid homeostasis and particular changes in brain fatty acid (FA) composition. The abnormal extracellular accumulation and deposition of the peptide amyloid-β (Aβ) is considered as an early toxic event in AD pathogenesis, which initiates a series of events leading to neuronal dysfunction and death. These include the induction of neuroinflammation and oxidative stress, the disruption of calcium homeostasis and membrane integrity, an impairment of cerebral energy metabolism, as well as synaptic and mitochondrial dysfunction. Dietary medium chain fatty acids (MCFAs) and polyunsaturated ω-3-fatty acids (ω-3-PUFAs) seem to be valuable for disease modification. Both classes of FAs have neuronal health-promoting and cognition-enhancing properties and might be of benefit for patients suffering from mild cognitive impairment (MCI) and AD. This review summarizes the current knowledge about the molecular mechanisms by which MCFAs and ω-3-PUFAs reduce the cerebral Aβ deposition, improve brain energy metabolism, and lessen oxidative stress levels.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5717 ◽  
Author(s):  
Jung-Yeon Kim ◽  
Jaechan Leem ◽  
Kwan-Kyu Park

Sepsis is the major cause of acute kidney injury (AKI) in severely ill patients, but only limited therapeutic options are available. During sepsis, lipopolysaccharide (LPS), an endotoxin derived from bacteria, activates signaling cascades involved in inflammatory responses and tissue injury. Apamin is a component of bee venom and has been shown to exert antioxidative, antiapoptotic, and anti-inflammatory activities. However, the effect of apamin on LPS-induced AKI has not been elucidated. Here, we show that apamin treatment significantly ameliorated renal dysfunction and histological injury, especially tubular injury, in LPS-injected mice. Apamin also suppressed LPS-induced oxidative stress through modulating the expression of nicotinamide adenine dinucleotide phosphate oxidase 4 and heme oxygenase-1. Moreover, tubular cell apoptosis with caspase-3 activation in LPS-injected mice was significantly attenuated by apamin. Apamin also inhibited cytokine production and immune cell accumulation, suppressed toll-like receptor 4 pathway, and downregulated vascular adhesion molecules. Taken together, these results suggest that apamin ameliorates LPS-induced renal injury through inhibiting oxidative stress, apoptosis of tubular epithelial cells, and inflammation. Apamin might be a potential therapeutic option for septic AKI.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 211-212
Author(s):  
Hua Zhang ◽  
Yuhuan Chen ◽  
Lili Mats ◽  
Qianru Hui ◽  
Rong Tsao ◽  
...  

Abstract An impaired intestinal barrier function results in aggravating inflammatory response at a systemic scale, eventually leading to rising risk for systemic diseases (e.g., muscle myopathy and vascular disorders). In the present study, the impact of intake polyphenol-rich red osier dogwood extracts (RWE) on the inflammation of endothelial cells was exploited. A strong anti-inflammatory activity of RWE was found to suppress the expression of pro-inflammatory mediators (e.g., IL-8, TNF-α, IL-6, and ICAM) in the inflamed intestinal epithelial cell model. Furthermore, the intestinal transported RWE derived phenolic compounds was shown to protect the endothelial cells against both oxidative and inflammatory damages in a Caco-2/EA.hy926 co-culture cell model. Their protective activities in EA.hy926 was found to be strongly associated with intestinal absorption efficiency. The accumulation of transported rutin and unknown monoglyceride quercetin from RWE were identified across the Caco-2 BBe1 monolayer by HPLC up to 24 h. The highest concentration of transported rutin and monoglyceride quercetin derived from RWE were detected as 2.0 ± 0.22 µg/mL and 0.5 ± 0.08 µg/mL in the basolateral compartment after 12 h and 24 h of incubation, respectively. Profound anti-inflammatory effects of RWE derived polyphenols was observed to suppress pro-inflammatory mediator expression, including IL-8, TNF-α, IL-6, ICAM, VCAM and Cox2, in the TNF-α or oxidized low-density lipoprotein (oxLDL)-induced basolateral EA.hy926 cells (co-culture model). Moreover, we observed a significant inhibitory effect of the transported RWE on oxLDL-induced inflammation after 6 h incubation rather than 24 h, indicating the potential health benefits of RWE is determined by its bioavailability. Results of this study demonstrated that phenolic compounds derived from RWE could be delivered into the circulation system to mitigate inflammatory responses thereby being a promising dietary agent for preventing systemic diseases (e.g., cardiovascular diseases in humans and white stripping/woody meat in broiler chickens).


2015 ◽  
Vol 2015 ◽  
pp. 1-24 ◽  
Author(s):  
Mika Reinisalo ◽  
Anna Kårlund ◽  
Ali Koskela ◽  
Kai Kaarniranta ◽  
Reijo O. Karjalainen

Numerous studies have highlighted the key roles of oxidative stress and inflammation in aging-related diseases such as obesity, type 2 diabetes, age-related macular degeneration (AMD), and Alzheimer’s disease (AD). In aging cells, the natural antioxidant capacity decreases and the overall efficiency of reparative systems against cell damage becomes impaired. There is convincing data that stilbene compounds, a diverse group of natural defence phenolics, abundant in grapes, berries, and conifer bark waste, may confer a protective effect against aging-related diseases. This review highlights recent data helping to clarify the molecular mechanisms involved in the stilbene-mediated protection against oxidative stress. The impact of stilbenes on the nuclear factor-erythroid-2-related factor-2 (Nrf2) mediated cellular defence against oxidative stress as well as the potential roles of SQSTM1/p62 protein in Nrf2/Keap1 signaling and autophagy will be summarized. The therapeutic potential of stilbene compounds against the most common aging-related diseases is discussed.


2011 ◽  
Vol 300 (5) ◽  
pp. R1152-R1162 ◽  
Author(s):  
Ioanna Sigala ◽  
Panayiotis Zacharatos ◽  
Dimitris Toumpanakis ◽  
Tatiana Michailidou ◽  
Olga Noussia ◽  
...  

Inspiratory resistive breathing (IRB) induces cytokine expression in the diaphragm. The mechanism of this cytokine induction remains elusive. The roles of MAPKs and NF-κB and the impact of oxidative stress in IRB-induced cytokine upregulation in the diaphragm were studied. Wistar rats were subjected to IRB (50% of maximal inspiratory pressure) via a two-way nonrebreathing valve for 1, 3, or 6 h. Additional groups of rats subjected to IRB for 6 h were randomly assigned to receive either solvent or N-acetyl-cysteine (NAC) or inhibitors of NF-κB (BAY-11–7082), ERK1/2 (PD98059), and P38 MAPK (SB203580) to study the effect of oxidative stress, NF-κB, and MAPKs in IRB-induced cytokine upregulation in the diaphragm. Quietly breathing animals served as controls. IRB upregulated cytokine (IL-6, TNF-α, IL-10, IL-2, IL-1β) protein levels in the diaphragm and resulted in increased activation of MAPKs (P38, ERK1/2) and NF-κB. Inhibition of NF-κB and ERK1/2 blunted the upregulation of all cytokines except that of IL-6, which was further increased. P38 inhibition attenuated all cytokine (including IL-6) upregulation. Both P38 and ERK1/2 inhibition decreased NF-κB/p65 subunit phosphorylation. NAC pretreatment blunted IRB-induced cytokine upregulation in the diaphragm and resulted in decreased ERK1/2, P38, and NF-κB/p65 phosphorylation. In conclusion, IRB-induced cytokine upregulation in the diaphragm is under the regulatory control of MAPKs and NF-κB. IL-6 is regulated differently from all other cytokines through a P38-dependent and NF-κB independent pathway. Oxidative stress is a stimulus for IRB-induced cytokine upregulation in the diaphragm.


2013 ◽  
Vol 110 (4) ◽  
pp. 587-598 ◽  
Author(s):  
Audrey Chanet ◽  
Dragan Milenkovic ◽  
Sylvain Claude ◽  
Jeanette A. M. Maier ◽  
Muhammad Kamran Khan ◽  
...  

Flavanones are found specifically and abundantly in citrus fruits. Their beneficial effect on vascular function is well documented. However, little is known about their cellular and molecular mechanisms of action in vascular cells. The goal of the present study was to identify the impact of flavanone metabolites on endothelial cells and decipher the underlying molecular mechanisms of action. We investigated the impact of naringenin and hesperetin metabolites at 0·5, 2 and 10 μm on monocyte adhesion to TNF-α-activated human umbilical vein endothelial cells (HUVEC) and on gene expression. Except hesperetin-7-glucuronide and naringenin-7-glucuronide (N7G), when present at 2 μm, flavanone metabolites (hesperetin-3′-sulphate, hesperetin-3′-glucuronide and naringenin-4′-glucuronide (N4′G)) significantly attenuated monocyte adhesion to TNF-α-activated HUVEC. Exposure of both monocytes and HUVEC to N4′G and N7G at 2 μm resulted in a higher inhibitory effect on monocyte adhesion. Gene expression analysis, using TaqMan Low-Density Array, revealed that flavanone metabolites modulated the expression of genes involved in atherogenesis, such as those involved in inflammation, cell adhesion and cytoskeletal organisation. In conclusion, physiologically relevant concentrations of flavanone metabolites reduce monocyte adhesion to TNF-α-stimulated endothelial cells by affecting the expression of related genes. This provides a potential explanation for the vasculoprotective effects of flavanones.


Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1563
Author(s):  
Muhammad Shahid Riaz Rajoka ◽  
Rohit Thirumdas ◽  
Hafiza Mahreen Mehwish ◽  
Muhammad Umair ◽  
Mohsin Khurshid ◽  
...  

Dietary components have an important role on the structure and function of host gut microbial communities. Even though, various dietary components, such as carbohydrates, fats, proteins, fibers, and vitamins, have been studied in depth for their effect on gut microbiomes, little attention has been paid regarding the impact of several food antioxidants on the gut microbiome. The long-term exposure to reactive oxygen species (ROS) can cause microbial dysbiosis which leads to numerous intestinal diseases such as microbiota dysbiosis, intestinal injury, colorectal cancers, enteric infections, and inflammatory bowel diseases. Recently, it has been shown that the food derived antioxidant compounds might protect the host from intestinal oxidative stress via modulating the composition of beneficial microbial species in the gut. The present review summarizes the impact of food antioxidants including antioxidant vitamins, dietary polyphenols, carotenoids, and bioactive peptides on the structure as well as function of host gut microbial communities. Several in vitro, animal model, and clinical studies indicates that food antioxidants might modify the host gut microbial communities and their health status. However, still further clarification is needed as to whether changes in certain microbial species caused by food additives may lead to changes in metabolism and immune function.


Sign in / Sign up

Export Citation Format

Share Document