scholarly journals The Influence of In Vitro Gastrointestinal Digestion on the Chemical Composition and Antioxidant and Enzyme Inhibitory Capacities of Carob Liqueurs Obtained with Different Elaboration Techniques

Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 563 ◽  
Author(s):  
Raquel Rodríguez-Solana ◽  
Natacha Coelho ◽  
Antonio Santos-Rufo ◽  
Sandra Gonçalves ◽  
Efrén Pérez-Santín ◽  
...  

Carob liqueur is a traditional Mediterranean alcoholic beverage obtained via a wide range of production techniques contributing to the different organoleptic attributes of the final product. The aim of this research was to evaluate the stability of the chemical composition and biological capacities (antioxidant and enzyme inhibition) under in vitro simulated gastrointestinal digestion of liqueurs prepared by flavouring the fig spirit with carob pulp by maceration, distillation, percolation, or aqueous and hydro-alcoholic infusions. For this purpose, the phenolic and furanic compositions, the total phenolic (TPC) and flavonoid (TFC) contents, antioxidant capacity (AC), and enzyme inhibitory potential against acethylcholinesterase, tyrosinase, α-glucosidase and α-amylase enzymes were evaluated. The content of gallic acid decreased after gastrointestinal digestion, while TPC, TFC, and AC significantly increased after each digestion phase. Overall, no significantly different enzyme inhibitions (p < 0.05) were observed among digested liqueurs, with moderate inhibition against acethylcholinesterase and tyrosinase (enzymes related with neurodegenerative diseases), and potent and low inhibitory capacities for α-glucosidase and α-amylase, respectively (ideal conditions employed in antidiabetic therapy). The study indicates that hydro-alcoholic infusion and maceration were the most appropriate methods to obtain liqueurs with higher values of the aforementioned parameters and safe levels of toxic furanics.

Author(s):  
Paolo Governa ◽  
Fabrizio Manetti ◽  
Elisabetta Miraldi ◽  
Marco Biagi

AbstractThe stability of tea phenolic compounds is influenced by pH value and digestive processes. However, the complex mixture of constituents in tea may modulate the stability of these compounds during digestion. In this study, tea infusions obtained from green, black, and Oolong tea leaves were exposed to in vitro simulated gastrointestinal digestion, and the stability of ( +)-catechin, caffeine, (−)-epicatechin, epigallocatechin-3-gallate (EGCG), and gallic acid was compared to that of isolated compounds. Changes in antioxidant activity were also evaluated by means of DPPH assay and in a H2O2-induced in vitro oxidative stress model, using Caco-2 cells. The stability of teas antioxidant constituents was different when using teas extract, compared to the reference compound alone, with the total phenolic content being more stable in extracts containing them in higher amount. EGCG degradation correlated well with changes in the DPPH inhibition assay, confirming its pivotal role in the antioxidant activity of tea. Differently, the antioxidant effect in the in vitro cell-based model was much more related to the initial total phenolic content of the extracts, with green tea being more effective than black tea and Oolong tea. Moreover, the antioxidant activity of teas was strongly affected by gastrointestinal digestion. Taken together, these findings suggest a protective role of teas phytocomplex against gastrointestinal digestion of antioxidant constituents. In conclusion, the effect of gastrointestinal digestion on the antioxidant activity of tea should be taken into account, as this may be different from one extract to another and information on the stability of active constituents cannot be extrapolated from data obtained using single compounds.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1593
Author(s):  
Iván Gómez-López ◽  
Gloria Lobo-Rodrigo ◽  
María P. Portillo ◽  
M. Pilar Cano

The aim of the present study was the full characterization, quantification, and determination of the digestive stability and bioaccessibility of individual betalain and phenolic compounds of Opuntia stricta, var. Dillenii fresh fruits (peel, pulp, and whole fruit) and of the products of the industrialization to obtain jam (raw pressed juice (product used for jam formulation), by-product (bagasse), and frozen whole fruit (starting material for jam production)). Opuntia stricta var. Dillenii fruits and products profile showed 60 betalain and phenolic compounds that were identified and quantified by HPLC-DAD-ESI/MS and HPLC-DAD-MS/QTOF, being 25 phenolic acids (including isomers and derivatives), 12 flavonoids (including glycosides), 3 ellagic acids (including glycosides and derivative), and 20 betanins (including degradation compounds). In vitro gastrointestinal digestion was performed by INFOGEST® protocol. Fruit pulp showed the greater content of total betalains (444.77 mg/100 g f.w.), and jam only showed very low amounts of two betanin degradation compounds, Cyclo-dopa-5-O-β-glucoside (and its isomer) (0.63 mg/100 f.w.), and two Phyllocactin derivatives (1.04 mg/100 g f.w.). Meanwhile, fruit peel was the richer tissue in total phenolic acids (273.42 mg/100 g f.w.), mainly in piscidic acid content and total flavonoids (7.39 mg/100 g f.w.), isorhamnetin glucoxyl-rhamnosyl-pentoside (IG2) being the most abundant of these compounds. The stability of betalains and phenolic compounds during in vitro gastrointestinal digestion is reported in the present study. In Opuntia stricta var. Dillenii pulp (the edible fraction of the fresh fruit), the betanin bioaccessibility was only 22.9%, and the flavonoid bioaccessibility ranged from 53.7% to 30.6%, depending on the compound. In non-edible samples, such as peel sample (PE), the betanin bioaccessibility was 42.5% and the greater bioaccessibility in flavonoids was observed for quercetin glycoside (QG1) 53.7%, the fruit peel being the most interesting material to obtain antioxidant extracts, attending to its composition on antioxidant compounds and their bioaccessibilities.


2019 ◽  
Vol 10 (4) ◽  
pp. 1856-1869 ◽  
Author(s):  
Joana R. Costa ◽  
Manuela Amorim ◽  
Ana Vilas-Boas ◽  
Renata V. Tonon ◽  
Lourdes M. C. Cabral ◽  
...  

Grape pomace (GP) is a major byproduct worldwide, and it is well known for its bioactive compounds, such as fibers and phenolic compounds, that are popular for their impact upon human health, including in gastrointestinal health.


2007 ◽  
Vol 2007 ◽  
pp. 223-223 ◽  
Author(s):  
Atiyeh Bohluli ◽  
Abasali Naserian ◽  
Reza Valizadeh ◽  
Fereydon Eftekarshahroodi

Pistachio (pistachio vera) is from Anacardiaceae family. According to the FAO (2003) report, Iran is the largest pistachio producer in the world (more than 310,000 tons). The most three important exported pistachio nuts of Iran are Ohadi, Akbari and Kaleghuchi (Mohammadi, 2005). About 150,000 tons in DM of pistachio by-product (PB) is produced from dehulling process in Iran, annually. This by-product is mainly consisted of pistachio hulls (PH), and then peduncles, leaves and a little amount of mesocarp and kernels. In this experiment the chemical composition, Total Phenolic Content (TPC) and tannin amount of PB and PH of Ohadi, Kaleghuchi and white varieties were determined; also, In Vitro Dry Matter and Organic Matter Digestibility (IVDMD and IVOMD) were measured.


RSC Advances ◽  
2015 ◽  
Vol 5 (112) ◽  
pp. 92089-92095 ◽  
Author(s):  
Zhengmei Wu ◽  
Jianwen Teng ◽  
Li Huang ◽  
Ning Xia ◽  
Baoyao Wei

The stability and antioxidant activity of phenolic compounds, as well as the bile acid-binding activity of green, black, raw liubao and aged liubao tea duringin vitrogastrointestinal digestion were evaluated.


Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 655 ◽  
Author(s):  
Ming Hsieh-Lo ◽  
Gustavo Castillo-Herrera ◽  
Luis Mojica

Black bean is a source of anthocyanins and other phenolic compounds that are associated with health benefits. This work aimed to optimize the extraction and determine the stability and biological potential of black bean anthocyanin-rich extracts recovered by supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE). The highest concentration of anthocyanins and total phenolic compounds were recovered with SFE using 300 bar, 60 °C and co-solvent ethanol/distilled water (50/50, v/v). Eleven non-colored phenolic compounds were identified in SFE extract using Ultra performance liquid chromatography - Electrospray ionization–Quadrupole -Time of flight - Mass spectrometry (UPLC-ESI-QToF-MS/MS). Myricetin, syringic acid, rutin hydrate and chlorogenic acid presented the highest relative area among identified compounds. Compared to leaching extraction, SFE extracts showed a similar storage stability at 4, 25 and 32 °C (p < 0.05), but with a higher antioxidant potential (2,2-diphenyl-1-picryl-hydrazil (DPPH) IC50: 0.078 ± 0.01; 2,2’-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) IC50: 0.161 ± 0.03) and antidiabetic potential (α-amylase IC50: 124.76 ± 12.97; α-glucosidase IC50: 31.30 ± 0.84; dipeptidyl peptidase-IV IC50: 0.195 ± 0.01). SFE extraction is an efficient method to obtain anthocyanins and other phenolic compounds with exceptional biological potential.


2008 ◽  
Vol 3 (5) ◽  
pp. 1934578X0800300 ◽  
Author(s):  
Man Xu ◽  
Jian Han ◽  
Hui-feng Li ◽  
Li Fan ◽  
Ai-hua Liu ◽  
...  

The stability of salvianolic acid B and total phenolic acids from Salvia miltiorrhiza in water solutions at different temperatures, in buffered aqueous solutions at different pHs and in biological fluids, including simulated gastric and intestinal fluids, were investigated in vitro. The results showed that the degradation of salvianolic acid B was pH- and temperature-dependent. Furthermore, structures of the degradation products of salvianolic acid B and total phenolic acids were elucidated by liquid chromatography-electrospray ion trap mass spectrometry and analysis of the degraded solutions revealed seventeen degradation products. The possible degradation pathway of salvianolic acid B is proposed.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Saleh Abu-Lafi ◽  
Mahmoud Sami Al-Natsheh ◽  
Reem Yaghmoor ◽  
Fuad Al-Rimawi

The production of olive oil generates massive quantities of by-product called olive mill wastewater (OMWW). The uncontrolled disposal of OMWW poses serious environmental problems. The OMWW effluent is rich in several polyphenolic compounds. Liquid-liquid extraction of OMWW using ethyl acetate solvent was used to enrich phenolic compounds under investigation. Total phenolic and flavonoid content and antioxidant activity of the extract were determined. HPLC coupled to photodiode array (PDA) detector was used to analyze the main three phenolic compounds of OMWW, namely, hydroxytyrosol, tyrosol, and oleuropein. The antimicrobial activity of the extract was also investigated. Additionally, the OMWW extract was used as natural preservative and antioxidants for olive oil. Results showed that OMWW is very rich in phenolic compounds and has strong antioxidant activity. HPLC analysis showed that the extract contains mainly hydroxytyrosol and tyrosol but no oleuropein. The OMWW extract showed also positive activities as antibacterial (gram positive and gram negative) and antifungal as well as activities against yeast. The addition of OMWW extract to olive oil samples has an effect on the stability of olive oil as reflected by its acid value, peroxide value, K232 and K270, and total phenolic content.


Author(s):  
Gerardo Pamanes-Carrasco ◽  
Manuel Murillo-Ortiz ◽  
Esperanza Herrera-Torres ◽  
Agustin Corral-Luna

The aim of this study was to evaluate the inclusion of water hyacinth (WH) as a possible substitution of alfalfa hay (AH) in diets of beef cattle on in vitro methane production, gas kinetics and chemical composition. AH in the diets was substituted by WH at 0% (T1, as a control), 25% (T2), 50% (T3), 75% (T4) and 100% (T5). Methane, CO2 and gas production parameters were recorded after 24 and 48h of incubation. NDF, condensed tannins and total phenolic compounds increased when AH was substituted. Likewise, the net gas production decreased linearly when AH was substituted. However, gas production rate among treatments were similar. Methane and CO2 production decreased linearly with inclusion of WH. These results indicate that WH arises as a promising alternative for mitigating methane production in ruminants.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Urmeela Taukoorah ◽  
M. Fawzi Mahomoodally

Aloe veragel (AVG) is traditionally used in the management of diabetes, obesity, and infectious diseases. The present study aimed to investigate the inhibitory potential of AVG againstα-amylase,α-glucosidase, and pancreatic lipase activityin vitro. Enzyme kinetic studies using Michaelis-Menten (Km) and Lineweaver-Burk equations were used to establish the type of inhibition. The antioxidant capacity of AVG was evaluated for its ferric reducing power, 2-diphenyl-2-picrylhydrazyl hydrate scavenging ability, nitric oxide scavenging power, and xanthine oxidase inhibitory activity. The glucose entrapment ability, antimicrobial activity, and total phenolic, flavonoid, tannin, and anthocyanin content were also determined. AVG showed a significantly higher percentage inhibition (85.56±0.91) of pancreatic lipase compared to Orlistat. AVG was found to increase the Michaelis-Menten constant and decreased the maximal velocity (Vmax) of lipase, indicating mixed inhibition. AVG considerably inhibits glucose movement across dialysis tubes and was comparable to Arabic gum. AVG was ineffective against the tested microorganisms. Total phenolic and flavonoid contents were66.06±1.14 (GAE)/mg and60.95±0.97 (RE)/mg, respectively. AVG also showed interesting antioxidant properties. The biological activity observed in this study tends to validate some of the traditional claims of AVG as a functional food.


Sign in / Sign up

Export Citation Format

Share Document