scholarly journals Antibiotic Potential and Chemical Composition of the Essential Oil of Piper caldense C. DC. (Piperaceae)

2020 ◽  
Vol 10 (2) ◽  
pp. 631 ◽  
Author(s):  
José Weverton Almeida Bezerra ◽  
Felicidade Caroline Rodrigues ◽  
Rafael Pereira da Cruz ◽  
Luiz Everson da Silva ◽  
Wanderlei do Amaral ◽  
...  

Infections by multiresistant microorganisms have led to a continuous investigation of substances acting as modifiers of this resistance. By following this approach, the chemical composition of the essential oil from Piper caldense leaf and its antimicrobial potential were investigated. The antimicrobial activity was determined by broth microdilution method providing values for minimum inhibitory concentration (MIC), IC50, and minimum fungicidal concentration (MFC). The essential oil was tested as a modulator for several antibiotics, and its effect on the morphology of Candida albicans (CA) strains was also investigated. The chemical characterization revealed an oil composed mainly of sesquiterpenes. Among them are caryophyllene oxide (13.9%), spathulenol (9.1%), δ-cadinene (7.6%) and bicyclogermacrene (6.7%) with the highest concentrations. The essential oil showed very low activity against the strains of CA with the lowest values for IC50 and MFC of 1790 μg/mL and 8192 μg/mL, respectively. The essential oil modulated the activity of fluconazole against CA URM 4387 strain, which was demonstrated by the lower IC50 obtained, 2.7 μg/mL, whereas fluconazole itself presented an IC50 of 7.76 μg/mL. No modulating effect was observed in the MFC bioassays. The effect on fungal morphology was observed for both CA INCQS 40006 and URM 4387 strains. The hyphae projection was completely inhibited at 4096 μg/mL and 2048 μg/mL, respectively. Thus, the oil has potential as an adjuvant in antimicrobial formulations.

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
V. F. Furletti ◽  
I. P. Teixeira ◽  
G. Obando-Pereda ◽  
R. C. Mardegan ◽  
A. Sartoratto ◽  
...  

The efficacy of extracts and essential oils fromAllium tuberosum, Coriandrum sativum, Cymbopogon martini, Cymbopogon winterianus,andSantolina chamaecyparissuswas evaluated againstCandidaspp. isolates from the oral cavity of patients with periodontal disease. The most active oil was fractionated and tested againstC. albicansbiofilm formation. The oils were obtained by water-distillation and the extracts were prepared with macerated dried plant material. The Minimal Inhibitory Concentration—MIC was determined by the microdilution method. Chemical characterization of oil constituents was performed using Gas Chromatography and Mass Spectrometry (GC-MS). C. sativum activity oil upon cell and biofilm morphology was evaluated by Scanning Electron Microscopy (SEM). The best activities against planktonicCandidaspp. were observed for the essential oil and the grouped F8–10fractions fromC. sativum. The crude oil also affected the biofilm formation inC. albicanscausing a decrease in the biofilm growth. Chemical analysis of the F8–10fractions detected as major active compounds, 2-hexen-1-ol, 3-hexen-1-ol and cyclodecane. Standards of these compounds tested grouped provided a stronger activity than the oil suggesting a synergistic action from the major oil constituents. The activity ofC. sativumoil demonstrates its potential for a new natural antifungal formulation.


2014 ◽  
Vol 9 (2) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Dragoljub L. Miladinović ◽  
Budimir S. Ilić ◽  
Tatjana M. Mihajilov-Krstev ◽  
Jovana L. Jović ◽  
Marija S. Marković

The chemical composition and antibacterial activity were examined of Libanotis montana Crantz subsp. leiocarpa (Heuff.) Soó. (Apiaceae) essential oil. Gas chromatography and gas chromatography/mass spectrometry were used to analyze the chemical composition of the oil. The antibacterial activity was investigated by the broth microdilution method against thirteen bacterial strains. The interactions of the essential oil and three standard antibiotics: tetracycline, streptomycin and chloramphenicol toward five selected strains were evaluated using the microdilution checkerboard assay in combination with chemometric methods: principal components analysis and hierarchical cluster analysis. Sesquiterpene hydrocarbons were the most abundant compound class in the oil (67.2%), with β-elemene (40.4%) as the major compound. The essential oil exhibited slight antibacterial activity against the tested bacterial strains in vitro, but the combinations L. montana oil-chloramphenicol and L. montana oil-tetracycline exhibited mostly either synergistic or additive interactions. These combinations reduced the minimum effective dose of the antibiotics and, consequently, minimized their adverse side effects. In contrast, the association of L. montana essential oil and streptomycin was characterized by strong antagonistic interactions against Escherichia coli ATCC 25922. In the PCA and HCA analyses, streptomycin stood out and formed a separate group.


2008 ◽  
Vol 3 (2) ◽  
pp. 149-154 ◽  
Author(s):  
Zoran Maksimović ◽  
Marina Milenković ◽  
Dragana Vučićević ◽  
Mihailo Ristić

AbstractThis paper presents the results of a study on chemical composition and antimicrobial activity of Thymus pannonicus All. (Lamiaceae) essential oil from Vojvodina province (north of Serbia). The investigated oil was hydrodistilled from a flowering plant and analysed by GC and GC-MS. Fifty-three constituents were identified (>97% of total oil), with geranial (41.42%, w/w) and neral (29.61%, w/w) as the most prominent. The antimicrobial activity of the oil was evaluated using agar disc diffusion and broth microdilution method against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, two strains of Klebsiella pneumoniae and two strains of Candida albicans. The essential oil exhibited antimicrobial activity to varying degrees against all tested strains. The maximum activity of T. Pannonicus oil was observed against E. coli, S. aureus and both tested strains of C. Albicans (MIC = 50 µ/ml, each). Moderate activity was observed against P. aeruginosa and one of the tested strains of K. Pneumoniae (MIC = 200 µ/ml), while E. faecalis and the other strain of K. Pneumoniae expressed a higher degree of resistance (MIC > 200 µ/ml). This study confirms that essential oil of T. pannonicus possesses remarkable in vitro antimicrobial activity against several medicinally important pathogens. This is attributable to lemon-scented citral, a mixture of geranial and neral, which has well-documented antimicrobial activity against a range of bacteria and fungi.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5476 ◽  
Author(s):  
Delmacia G. de Macêdo ◽  
Marta Maria A. Souza ◽  
Maria Flaviana B. Morais-Braga ◽  
Henrique Douglas M. Coutinho ◽  
Antonia Thassya L. dos Santos ◽  
...  

Medicinal plants play a crucial role in the search for components that are capable of neutralizing the multiple mechanisms of fungal resistance. Psidium salutare (Kunth) O. Berg is a plant native to Brazil used as both food and traditional medicine to treat diseases and symptoms such as stomach ache and diarrhea, whose symptoms could be related to fungal infections from the genus Candida. The objective of this study was to investigate the influence of seasonal variability on the chemical composition of the Psidium salutare essential oil, its antifungal potential and its effect on the Candida albicans morphogenesis. The essential oils were collected in three different seasonal collection periods and isolated by the hydrodistillation process in a modified Clevenger apparatus with identification of the chemical composition determined by gas chromatography coupled to mass spectrometry (GC/MS). The antifungal assays were performed against Candida strains through the broth microdilution method to determine the minimum fungicidal concentration (MFC). Fungal growth was assessed by optical density reading and the Candida albicans dimorphic effect was evaluated by optical microscopy in microculture chambers. The chemical profile of the essential oils identified 40 substances in the different collection periods with γ-terpinene being the predominant constituent. The antifungal activity revealed an action against the C. albicans, C. krusei and C. tropicalis strains with an IC50 ranging from 345.5 to 2,754.2 µg/mL and a MFC higher than 1,024 µg/mL. When combined with essential oils at sub-inhibitory concentrations (MIC/16), fluconazole had its potentiated effect, i.e. a synergistic effect was observed in the combination of fluconazole with P.salutare oil against all Candida strains; however, for C. albicans, its effect was reinforced by the natural product in all the collection periods. The results show that the Psidium salutare oil affected the dimorphic transition capacity, significantly reducing the formation of hyphae and pseudohyphae in increasing concentrations. The results show that P. salutare oil exhibits a significant antifungal activity against three Candida species and that it can act in synergy with fluconazole. These results support the notion that this plant may have a potential use in pharmaceutical and preservative products.


2021 ◽  
Vol 10 (12) ◽  
pp. e313101220457
Author(s):  
Rafael Pereira ◽  
Josilayne de Fátima Souza Mendes ◽  
Raquel Oliveira dos Santos Fontenelle ◽  
Tigressa Helena Soares Rodrigues ◽  
Hélcio Silva dos Santos ◽  
...  

The aim of the present study was to investigate the biological activity of A. sativum essential oil against clinical isolates of C. albicans and, in addition, a computational study of the action of two main compounds of the essential oil on the protein of the fungus CYP51 was carried out. The Minimum Inhibitory Concentration and the Minimum Fungicidal Concentration were determined by the broth microdilution method. The biofilm formation was evaluated by biomass quantification using the violet crystal staining method. For the study of molecular docking computer simulations of interaction between CYP51 and ligands were performed using the AutoDock Vina code. The main constituents were diallyl disulfide, followed by diallyl disulfide. The essential oil demonstrated activity against clinical isolates of C. albicans. The essential oil showed a reduction progressive increase in the biomass produced from the biofilms of all yeasts tested in this study. The ligands Diallyl disulfide, Diallyl trisulfide and fluconazole formed complexes with the protein target.  Based on the results, the essential oil of A. sativum can be considered promising product for the development of new drugs in the prevention of infections associated with C. albicans. This study characterizes the effects of A. sativum essential oil against clinical isolates of C. albicans responsible for the development of pathologies in humans.


Separations ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 10
Author(s):  
Maria do Socorro Costa ◽  
Nara Juliana Santos Araújo ◽  
Thiago Sampaio de Freitas ◽  
Francisco Assis Bezerra da Cunha ◽  
Wanderlei do Amaral ◽  
...  

Presently, results from a study carried out in this area using the essential oil from the Calyptranthes concinna species, a representative from the Myrtaceae family, are reported. The essential oil was obtained by hydrodistillation and gas chromatography coupled to mass spectrometry was used to identify its chemical constituents. Antibacterial activity was determined using the broth microdilution method, thus obtaining the Minimal Inhibitory Concentration (MIC) value, from which the subinhibitory concentration (MIC/8) was derived. The C. concinna essential oil presented antibacterial activity against both standard and multiresistant bacteria. In addition, the oil demonstrated an antibiotic activity potentiation against Staphylococcus aureus and Escherichia coli when in combination with the antibiotic gentamicin, reducing the MIC from 141.38 μg/mL and 208.63 μg/mL to 64 μg/mL and 128 μg/mL, respectively. Conclusions: Findings from the present study suggest this oil is promising in terms of its antimicrobial activity.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Yasser Shahbazi

The aim of the present study was to investigate chemical composition and antibacterial activity of essential oil from the leaf ofMentha spicataplant against common food-borne pathogenic bacteria (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Listeria monocytogenes, Salmonella typhimurium, andEscherichia coliO157:H7). Chemical composition of the essential oil was identified by gas chromatography coupled with mass spectrometer detector (GC-MS). The antibacterial activity of the essential oil was evaluated by broth microdilution method and agar disk diffusion assay. According to the result of GC-MS analysis, 18 components were identified, accounting for 99.89% of the whole essential oil. The main components were carvone (78.76%), limonene (11.50%),β-bourbonene (11.23%),cis-dihydrocarveol (1.43%),trans-caryophyllene (1.04%), menthone (1.01%), menthol (1%), and terpinen-4-ol (0.99). The essential oil exhibited moderate level of antibacterial activity against all test microorganisms. In general, Gram-positive bacteria were more susceptible toM. spicataessential oil than Gram-negative bacteria.L. monocytogeneswas the most sensitive of the microorganisms to the antibacterial activity ofM. spicataessential oil (inhibition zone = 22 mm and MIC and MBC = 2.5 µL/mL). Based on our results, the essential oil ofM. spicataplant collected from Kermanshah province, west of Iran, has a potential to be applied as antibacterial agent.


Pathogens ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 192 ◽  
Author(s):  
Sanae Akkaoui ◽  
Anders Johansson ◽  
Maâmar Yagoubi ◽  
Dorte Haubek ◽  
Adnane El hamidi ◽  
...  

In this study, the essential oil of Origanum vulgare was evaluated for putative antibacterial activity against six clinical strains and five reference strains of Aggregatibacter actinomycetemcomitans, in comparison with some antimicrobials. The chemical composition of the essential oil was analyzed, using chromatography (CG) and gas chromatography–mass spectrometry coupled (CG–MS). The major compounds in the oil were Carvacrol (32.36%), α-terpineol (16.70%), p-cymene (16.24%), and Thymol (12.05%). The antimicrobial activity was determined by an agar well diffusion test. A broth microdilution method was used to study the minimal inhibitory concentration (MIC). The minimal bactericidal concentration (MBC) was also determined. The cytotoxicity of the essential oil (IC50) was <125 µg/mL for THP-1 cells, which was high in comparison with different MIC values for the A. actinomycetemcomitans strains. O. vulgare essential oil did not interfere with the neutralizing capacity of Psidium guajava against the A. actinomycetemcomitans leukotoxin. In addition, it was shown that the O. vulgare EO had an antibacterial effect against A. actinomycetemcomitans on a similar level as some tested antimicrobials. In view of these findings, we suggest that O.vulgare EO may be used as an adjuvant for prevention and treatment of periodontal diseases associated to A. actinomycetemcomitans. In addition, it can be used together with the previously tested leukotoxin neutralizing Psidium guajava.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1065
Author(s):  
Vaida Vaičiulytė ◽  
Kristina Ložienė ◽  
Jurgita Švedienė ◽  
Vita Raudonienė ◽  
Algimantas Paškevičius

The aim of this study was to evaluate occurrence of T. pulegioides α-terpinyl acetate chemotype, as source of natural origin α-terpinyl acetate, to determine its phytotoxic and antimicrobial features. Were investigated 131 T. pulegioides habitats. Essential oils were isolated by hydrodistillation and analyzed by GC-FID and GC-MS. Phytotoxic effect of essential oil of this chemotype on monocotyledons and dicotyledons through water and air was carried out in laboratory conditions; the broth microdilution method was used to screen essential oil effect against human pathogenic microorganisms. Results showed that α-terpinyl acetate was very rare compound in essential oil of T. pulegioides: it was found only in 35% of investigated T. pulegioides habitats. α-Terpinyl acetate (in essential oil and pure) demonstrated different behavior on investigated plants. Phytotoxic effect of α-terpinyl acetate was stronger on investigated monocotyledons than on dicotyledons. α-Terpinyl acetate essential oil inhibited seeds germination and radicles growth for high economic productivity forage grass monocotyledon Poa pratensis, but stimulated seed germination for high economic productive forage legume dicotyledon Trifolium pretense. α-Terpinyl acetate essential oil showed high antimicrobial effect against fungi and dermatophytes but lower effect against bacteria and Candida yeasts. Therefore, T. pulegioides α-terpinyl acetate chemotype could be a potential compound for developing preventive measures or/and drugs for mycosis.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2835
Author(s):  
Anna Stochmal ◽  
Bartosz Skalski ◽  
Rostyslav Pietukhov ◽  
Beata Sadowska ◽  
Joanna Rywaniak ◽  
...  

Although the major components of various organs of sea buckthorn have been identified (particularly phenolic compounds), biological properties of many of these phytochemicals still remain poorly characterized. In this study, we focused on the chemical composition and biological activity of preparations that were obtained from sea buckthorn twigs and leaves. The objective was to investigate cytotoxicity of these preparations against human fibroblast line HFF-1, using MTT reduction assay, their anti- or pro-oxidant activities against the effects of a biological oxidant -H2O2/Fe—on human plasma lipids and proteins in vitro (using TBARS and carbonyl groups as the markers of oxidative stress). Antimicrobial activity of the tested preparations against Gram-positive (Staphylococcus aureus, S. epidermidis, Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa), as well as against fungi (Candida albicans, C. glabrata) by the EUCAST-approved broth microdilution method, followed by growth on solid media, were also assessed. Our analysis showed significant differences in chemical composition and biological properties of the tested preparations (A–F). All tested preparations from sea buckthorn twigs (D–F) and one preparation from sea buckthorn leaves (preparation C) may be a new source of phenolic antioxidants for pharmacological and cosmetic applications.


Sign in / Sign up

Export Citation Format

Share Document