scholarly journals Numerical Design Method for CVT Supported in Standard Variable Speed Rubber V-Belts

2020 ◽  
Vol 10 (18) ◽  
pp. 6238
Author(s):  
Ivan Arango ◽  
Sebastian Muñoz Alzate

The design of a V-belt continuously variable transmission (CVT) system is a complex problem due to the multiple interactions between components during its operation. Literature on CVT system design methods is scarce, and the vast majority of works include implicit equations that hinder applications at a basic design level. This research aims to introduce a numerical CVT design method for electric vehicles (EV) and internal combustion engine (ICE) vehicles considering each one of their components and using mechanical centrifugal actuators and a rubber V-belt. This design method is based on user needs, for which there are three main requirements: road specifications, vehicle characteristics, and expected performance. This method is focused on a transmission for a vehicle traveling on the same route constantly, such as public transport vehicles. From three-wheelers to medium cargo vehicles, there is a greatly diverse range of potential applications for using this method for each type of standard rubber V-belt.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1566
Author(s):  
Oliver J. Pemble ◽  
Maria Bardosova ◽  
Ian M. Povey ◽  
Martyn E. Pemble

Chitosan-based films have a diverse range of potential applications but are currently limited in terms of commercial use due to a lack of methods specifically designed to produce thin films in high volumes. To address this limitation directly, hydrogels prepared from chitosan, chitosan-tetraethoxy silane, also known as tetraethyl orthosilicate (TEOS) and chitosan-glutaraldehyde have been used to prepare continuous thin films using a slot-die technique which is described in detail. By way of preliminary analysis of the resulting films for comparison purposes with films made by other methods, the mechanical strength of the films produced was assessed. It was found that as expected, the hybrid films made with TEOS and glutaraldehyde both show a higher yield strength than the films made with chitosan alone. In all cases, the mechanical properties of the films were found to compare very favorably with similar measurements reported in the literature. In order to assess the possible influence of the direction in which the hydrogel passes through the slot-die on the mechanical properties of the films, testing was performed on plain chitosan samples cut in a direction parallel to the direction of travel and perpendicular to this direction. It was found that there was no evidence of any mechanical anisotropy induced by the slot die process. The examples presented here serve to illustrate how the slot-die approach may be used to create high-volume, high-area chitosan-based films cheaply and rapidly. It is suggested that an approach of the type described here may facilitate the use of chitosan-based films for a wide range of important applications.



Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4504
Author(s):  
Muhanna Al-shaibani ◽  
Radin Maya Saphira Radin Mohamed ◽  
Nik Sidik ◽  
Hesham Enshasy ◽  
Adel Al-Gheethi ◽  
...  

The current review aims to summarise the biodiversity and biosynthesis of novel secondary metabolites compounds, of the phylum Actinobacteria and the diverse range of secondary metabolites produced that vary depending on its ecological environments they inhabit. Actinobacteria creates a wide range of bioactive substances that can be of great value to public health and the pharmaceutical industry. The literature analysis process for this review was conducted using the VOSviewer software tool to visualise the bibliometric networks of the most relevant databases from the Scopus database in the period between 2010 and 22 March 2021. Screening and exploring the available literature relating to the extreme environments and ecosystems that Actinobacteria inhabit aims to identify new strains of this major microorganism class, producing unique novel bioactive compounds. The knowledge gained from these studies is intended to encourage scientists in the natural product discovery field to identify and characterise novel strains containing various bioactive gene clusters with potential clinical applications. It is evident that Actinobacteria adapted to survive in extreme environments represent an important source of a wide range of bioactive compounds. Actinobacteria have a large number of secondary metabolite biosynthetic gene clusters. They can synthesise thousands of subordinate metabolites with different biological actions such as anti-bacterial, anti-parasitic, anti-fungal, anti-virus, anti-cancer and growth-promoting compounds. These are highly significant economically due to their potential applications in the food, nutrition and health industries and thus support our communities’ well-being.



Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1825
Author(s):  
Caiyang Wei ◽  
Theo Hofman ◽  
Esin Ilhan Caarls

For an electric vehicle (EV) with a continuously variable transmission (CVT), a novel convex programming (CP)-based co-design method is proposed to minimize the total-cost-of-ownership (TCO). The integration of the electric machine (EM) and the CVT is the primary focus. The optimized system with co-design reduces the TCO by around 5.9% compared to a non-optimized CVT-based EV (based on off-the-shelf components) and by around 2% compared to the EV equipped with a single-speed transmission (SST). By taking advantage of the control and design freedom provided by the CVT, the optimal CVT, EM and battery sizes are found to reduce the system cost. It simultaneously finds the optimal CVT speed ratio and air-flow rate of the cooling system reducing the energy consumption. The strength of co-design is highlighted by comparing to a sequential design, and insights into the design of a low-power EV that is energy-efficient and cost-effective for urban driving are provided. A highly integrated EM-CVT system, which is efficient, low-cost and lightweight, can be expected for future EV applications.



2021 ◽  
Vol 87 (3) ◽  
pp. 307-316
Author(s):  
Toshihiro YUKAWA ◽  
Akinori MURAKAMI ◽  
Shoma KUMAGAI ◽  
Yoshiaki OSHIDA ◽  
Youichi TAKEDA ◽  
...  


Author(s):  
Yangzhi Chen ◽  
Xiaoping Xiao ◽  
Daoping Zhang ◽  
Haifei Xiao ◽  
Yueling Lyu

Based on the space curve meshing theory, a novel noncircular line gear mechanism was advanced, namely, this paper presented a design method of the variable speed ratio noncircular line gear with coplanar axes. Firstly, the universal contact curve equations of the constant speed ratio and variable speed ratio line teeth were established. After the constraint equations of the rotating angle of the driving and driven variable speed ratio noncircular line gears were analyzed and established, the relationship between the rotating angle of the driven variable speed ratio noncircular line gear and the parameter t in the VSR area was assumed to be a piecewise fourth-order curve. Then, the contact curve equations of the variable speed ratio noncircular line gears were derived, and the entity models of variable speed ratio noncircular line gears were built. The prototypes of the parallel axis and intersecting axis variable speed ratio noncircular line gears were manufactured by Stereo Lithography Apparatus, and the speed ratios were measured on the kinematic test rig. The kinematic and finite element analysis results demonstrate that the relationship between the rotating angle of the driven variable speed ratio noncircular line gear and the parameter t conforms to the designed function and the noncircular line teeth smoothly achieve the preset VSR transmission. The proposed design method is helpful to design the variable speed ratio noncircular line gears with lower theoretical sliding rate and wider variation range of the speed ratio; consequently, the designed variable speed ratio noncircular line gears have better applicability in specific variable speed ratio applications.



Author(s):  
Guang Xia ◽  
Huayu Zong ◽  
Xiwen Tang ◽  
Linfeng Zhao ◽  
Baoqun Sun

Given the transmission efficiency fluctuation and response lag problem of hydromechanical continuous variable transmission combined with the complex and variable working environment of a tractor, an integrated control strategy of engine throttle compensation–hydromechanical continuous variable transmission speed regulation is adopted for dual-flow transmission control. On the basis of the estimation of working resistance, a fuzzy algorithm is used to design the throttle compensation law. Considering the maximum driving power of a tractor as the target of variable speed control, an hydromechanical continuous variable transmission efficiency model is established, and the control law of an hydromechanical continuous variable transmission displacement ratio with the maximum driving power of the tractor under any working condition is determined. On the basis of the wavelet neural network proportional–integral–derivative algorithm, the control law of the hydromechanical continuous variable transmission speed regulation is designed, and the parameters of proportional–integral–derivative control are corrected in real time during the control process. Based on MATLAB/Simulink modelling and simulation and the real vehicle verification test, results showed that the influence of hydromechanical continuous variable transmission efficiency fluctuation on the driving power of the entire vehicle, the response lag of the pump-controlled motor system, and the effect of the leakage on the variable speed control and the fluctuation of the working resistance are solved by studying the hydromechanical continuous variable transmission variable speed transmission control strategy. This strategy improves the stability of the tractor speed and ensured the quality of the work, thereby improving the ability of the tractor to adapt to complex working environments.



2016 ◽  
Vol 30 (20) ◽  
pp. 1650256 ◽  
Author(s):  
Xuebo Yuan ◽  
Guochang Lin ◽  
Youshan Wang

Thermal cloaks have potential applications in thermal protection and sensing, and those cloaks with complex shapes are much more efficient in application. Layered discretization is a valid way to realize thermal cloaks designed through spatial transformation which are usually nonhomogeneous and anisotropic. However, previous studies are limited to two-dimensional cylindrical ones. Based on the theories of spatial transformation and effective medium, a four-step design method for layered structure of thermal cloak with complex shape is proposed. It is expected to realize the designed layered structure by utilizing the existing regular materials. According to the numerical simulations, the thermal cloaking performances of layered structures are good and close to that of the perfect thermal cloaks. This study has provided an effective way for realizing thermal cloak with complex shape.



Author(s):  
Derek F. Lahr ◽  
Dennis W. Hong

The Cam-based Infinitely Variable Transmission (IVT) is a new type of ratcheting IVT based on a three dimensional cam and follower system which provides unique characteristics such as generating specific functional speed ratio outputs including dwells, for a constant velocity input. This paper presents several mechanisms and design approaches used to improve the torque and speed capacity of this unique transmission. A compact, lightweight, and capable differential mechanism based on a cord and pulley system is developed to double the number of followers in contact with the cam at any time, thereby reducing the contact stress between the followers and the cam surface considerably. A kinematic model governing the motion of this differential is developed and a few experimental results from the prototype are presented, showing an overall increase in performance including a smooth output, a wide gear range, and the ability to shift under load. Plans for future improvements to the design, including an inverted external cam mechanism, is also presented along with the expected performance gains.



2020 ◽  
Vol 12 (14) ◽  
pp. 5578
Author(s):  
Ferran Giones ◽  
Daniel Laufs ◽  
Carsten Schultz

We report the experience of the FucoSan InterReg project that had the ambition to generate commercialization opportunities for biotechnology research in a marine environment. Fucoidan, a promising biomarine polysaccharide extracted from seaweed, offers a broad array of potential applications; however, the supporting innovation value chain is still under development. We explore how the use of business modelling tools can contribute to building a shared understanding of commercialization opportunities across a diverse range of research and development actors. We analyze data (interviews, workshops, and surveys) from a German-Danish network of actors involved in the FucoSan InterReg project to identify how the tools contribute to setting up a base to support future activities across a potential innovation value chain. The results point towards the direct and indirect positive effects of engaging in the co-creation of a shared understanding of the functionality and possibilities of promising biomarine products. The findings support the idea that interdisciplinary and multilateral interactions help actors to identify the necessary connections and interdependencies to build a sustainability-driven innovation value chain.



Author(s):  
Yashwanth Tummala ◽  
Aimy Wissa ◽  
Mary Frecker ◽  
James E. Hubbard

Ornithopters or flapping wing Unmanned Aerial Vehicles (UAVs) have potential applications in civil and military sectors. Amongst the UAVs, ornithopters have a unique ability to fly in low Reynolds number regions and also have the agility and maneuverability of a rotary wing aircraft. In nature, birds achieve such special characteristics by morphing their wings. The compliant spine (CS) design concept presented here represents a novel method of achieving wing morphing passively. In this paper, an optimal design method is developed that incorporates dynamic finite element analysis. To solve the CS design problem a new multi-objective optimization problem is formulated with three objective functions. The first objective function seeks to minimize the mass of the compliant spine. The second objective function seeks to maximize the deflection of the compliant spine for a particular dynamic loading condition. Finally, the third objective function seeks to minimize the stress in the design observed under the dynamic loading conditions experienced during flight. The deflections and stresses in the CS design are based on measured wing loads and are calculated by applying a sinusoidal forcing function at a prescribed forcing frequency. The optimization, performed via a controlled elitist genetic algorithm which is a variant of NSGA-II, is used to design CSs operating under dynamic conditions. Modal analysis and frequency response of an optimal compliant spine during the upstroke are also shown.



Sign in / Sign up

Export Citation Format

Share Document