scholarly journals The Oral Microbiome of Healthy Japanese People at the Age of 90

2020 ◽  
Vol 10 (18) ◽  
pp. 6450 ◽  
Author(s):  
Yoshiaki Nomura ◽  
Erika Kakuta ◽  
Noboru Kaneko ◽  
Kaname Nohno ◽  
Akihiro Yoshihara ◽  
...  

For a healthy oral cavity, maintaining a healthy microbiome is essential. However, data on healthy microbiomes are not sufficient. To determine the nature of the core microbiome, the oral-microbiome structure was analyzed using pyrosequencing data. Saliva samples were obtained from healthy 90-year-old participants who attended the 20-year follow-up Niigata cohort study. A total of 85 people participated in the health checkups. The study population consisted of 40 male and 45 female participants. Stimulated saliva samples were obtained by chewing paraffin wax for 5 min. The V3–V4 hypervariable regions of the 16S ribosomal RNA (rRNA) gene were amplified by PCR. Pyrosequencing was performed using MiSeq. Operational taxonomic units (OTUs) were assigned on the basis of a 97% identity search in the EzTaxon-e database. Using the threshold of 100% detection on the species level, 13 species were detected: Streptococcus sinensis, Streptococcus pneumoniae, Streptococcus salivarius, KV831974_s, Streptococcus parasanguinis, Veillonella dispar, Granulicatella adiacens, Streptococcus_uc, Streptococcus peroris, KE952139_s, Veillonella parvula, Atopobium parvulum, and AFQU_vs. These species represent potential candidates for the core make-up of the human microbiome.

Author(s):  
Yoshiaki Nomura ◽  
Ryoko Otsuka ◽  
Ryo Hasegawa ◽  
Nobuhiro Hanada

Several studies have shown that the oral microbiome is related to systemic health, and a co-relation with several specific diseases has been suggested. The oral microbiome depends on environmental- and community-level factors. In this observational study, the oral microbiomes of children of isolated mountain people were analyzed with respect to the core oral microbiome and etiology of dental caries. We collected samples of supragingival plaque from children (age 9–13) living in the Chin state of Myanmar. After DNA extraction and purification, next-generation sequencing of the V3–V4 hypervariable regions of the 16S rRNA was conducted. From thirteen subjects, 263,458 valid reads and 640 operational taxonomic units were generated at a 97% identity cut-off value. At the phylum level, Proteobacteria was the most abundant, followed by Firmicutes and Bacteroides. Forty-four bacteria were detected in total from all the subjects. For children without dental caries, Proteobacteria was abundant. In contrast, in children with dental caries, Firmicutes and Bacteroides were abundant. The oral microbiome of children living in an isolated area may be affected by environmental- and community-level factors. Additionally, the composition of the oral microbiome may affect the risk of dental caries.


Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 298
Author(s):  
Alison E. Murray ◽  
Nicole E. Avalon ◽  
Lucas Bishop ◽  
Karen W. Davenport ◽  
Erwan Delage ◽  
...  

Polar marine ecosystems hold the potential for bioactive compound biodiscovery, based on their untapped macro- and microorganism diversity. Characterization of polar benthic marine invertebrate-associated microbiomes is limited to few studies. This study was motivated by our interest in better understanding the microbiome structure and composition of the ascidian, Synoicum adareanum, in which palmerolide A (PalA), a bioactive macrolide with specificity against melanoma, was isolated. PalA bears structural resemblance to a hybrid nonribosomal peptide-polyketide that has similarities to microbially-produced macrolides. We conducted a spatial survey to assess both PalA levels and microbiome composition in S. adareanum in a region of the Antarctic Peninsula near Anvers Island (64°46′ S, 64°03′ W). PalA was ubiquitous and abundant across a collection of 21 ascidians (3 subsamples each) sampled from seven sites across the Anvers Island Archipelago. The microbiome composition (V3–V4 16S rRNA gene sequence variants) of these 63 samples revealed a core suite of 21 bacterial amplicon sequence variants (ASVs)—20 of which were distinct from regional bacterioplankton. ASV co-occurrence analysis across all 63 samples yielded subgroups of taxa that may be interacting biologically (interacting subsystems) and, although the levels of PalA detected were not found to correlate with specific sequence variants, the core members appeared to occur in a preferred optimum and tolerance range of PalA levels. These results, together with an analysis of the biosynthetic potential of related microbiome taxa, describe a conserved, high-latitude core microbiome with unique composition and substantial promise for natural product biosynthesis that likely influences the ecology of the holobiont.


Author(s):  
Brook A. Niemiec ◽  
Jerzy Gawor ◽  
Shuiquan Tang ◽  
Aishani Prem ◽  
Janina A. Krumbeck

Abstract OBJECTIVE To compare the bacteriome of the oral cavity in healthy dogs and dogs with various stages of periodontal disease. ANIMALS Dogs without periodontal disease (n = 12) or with mild (10), moderate (19), or severe (10) periodontal disease. PROCEDURES The maxillary arcade of each dog was sampled with a sterile swab, and swabs were submitted for next-generation DNA sequencing targeting the V1–V3 region of the 16S rRNA gene. RESULTS 714 bacterial species from 177 families were identified. The 3 most frequently found bacterial species were Actinomyces sp (48/51 samples), Porphyromonas cangingivalis (47/51 samples), and a Campylobacter sp (48/51 samples). The most abundant species were P cangingivalis, Porphyromonas gulae, and an undefined Porphyromonas sp. Porphyromonas cangingivalis and Campylobacter sp were part of the core microbiome shared among the 4 groups, and P gulae, which was significantly enriched in dogs with severe periodontal disease, was part of the core microbiome shared between all groups except dogs without periodontal disease. Christensenellaceae sp, Bacteroidales sp, Family XIII sp, Methanobrevibacter oralis, Peptostreptococcus canis, and Tannerella sp formed a unique core microbiome in dogs with severe periodontal disease. CONCLUSIONS AND CLINICAL RELEVANCE Results highlighted that in dogs, potential pathogens can be common members of the oral cavity bacteriome in the absence of disease, and changes in the relative abundance of certain members of the bacteriome can be associated with severity of periodontal disease. Future studies may aim to determine whether these changes are the cause or result of periodontal disease or the host immune response.


2020 ◽  
Vol 4 (s1) ◽  
pp. 2-3
Author(s):  
Joyce Wang ◽  
Marco Cassone ◽  
Kristen Gibson ◽  
Bonnie Lansing ◽  
Lona Mody ◽  
...  

OBJECTIVES/GOALS: We investigated the association between gut microbiota features in newly admitted nursing facility (NF) patients and the acquisition of vancomycin-resistant Enterococcus (VRE) and/or resistant Gram-negative bacteria (rGNB) within 14 days. METHODS/STUDY POPULATION: Patients were recruited at 6 Michigan NFs from 09/16-08/18. VRE or rGNB colonization status was determined by culture swabs collected from multiple body sites at enrolment, day 7, and day 14. Our analysis focused on patients with no colonization at baseline, a perirectal swab collected at baseline, and at least one follow-up visit. The V4 hypervariable region of the 16S rRNA gene from bacterial DNA in each sample was PCR-amplified and sequenced on the MiSeq platform. Sequencing results were then processed with the mothur bioinformatics pipeline to classify bacterial taxa present in each sample. Taxa typically associated with the skin microbiota were removed. The primary outcome was acquisition of VRE and/or rGNB within 14 days. Exposures of interest included patient and microbiota characteristics. RESULTS/ANTICIPATED RESULTS: Among 61 patients, 18 (30%) acquired AROs within 14 days of enrolment (3 VRE, 13 rGNB, 2 both) (Table 1). The baseline microbiota features differed significantly in those who acquired a new ARO. Of the major 8 phyla found across samples, patients who acquired an ARO were depleted in the number of phyla present (5.74 ± 1.20 vs 5.06 ± 1.43; p = 0.037) (Fig. 1). The log10-transformed relative abundance of Enterococcus was enriched in patients who acquired an ARO (−0.32 ± 1.47) compared to those who did not (−1.68 ± 1.76; p = 0.021) (Fig. 2). Patients who did not acquire an ARO tended to harbour more butyrate-producing bacterial taxa and strict anaerobes, although the differences were not statistically significant (relative abundance of butyrate producer: 29.49 ± 22.09 vs 22.05 ± 17.76; anaerobes: 64.78 ± 23.54 vs 53.68 ± 27.61). DISCUSSION/SIGNIFICANCE OF IMPACT: Microbiota metrics calculated from perirectal samples are predictive of ARO acquisition. The clinical utility of perirectal samples thus warrants further assessment.


2017 ◽  
Vol 1 (4) ◽  
pp. 287-296 ◽  
Author(s):  
Liam P. Shaw ◽  
Andrew M. Smith ◽  
Adam P. Roberts

The human microbiome is receiving a great deal of attention as its role in health and disease becomes ever more apparent. The oral microbiome, perhaps due to the ease with which we can obtain samples, is arguably the most well-studied human microbiome to date. It is obvious, however, that we have only just begun to scratch the surface of the complex bacterial and bacterial–host interactions within this complex community. Here, we describe the factors which are known to influence the development of the seemingly globally conserved, core, oral microbiome and those which are likely to be responsible for the observed differences at the individual level. We discuss the paradoxical situation of maintaining a stable core microbiome which is at the same time incredibly resilient and adaptable to many different stresses encountered in the open environment of the oral cavity. Finally, we explore the interactions of the oral microbiome with the host and discuss the interactions underlying human health and disease.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S422-S422
Author(s):  
Thomas J Louie ◽  
Matthew Sims ◽  
Richard Nathan ◽  
Steven O'Marro ◽  
Princy N Kumar ◽  
...  

Abstract Background The natural history of CDI recurrence after antibiotics may be helpful to understand the window of opportunity for microbiome repair. ECOSPOR III evaluated the efficacy of SER-109, an investigational microbiome therapeutic, compared to placebo with rates of rCDI as the primary endpoint. SER-109 was superior to placebo in reducing the rate of rCDI following standard-of-care antibiotics at 8 weeks (12.4% vs 39.8%, respectively; P < 0.001). Herein, we describe results from the secondary endpoint, time to recurrence, in this well-characterized study population. Methods A total of 182 C. difficile toxin+ adults with ≥ 3 CDI episodes and symptom resolution on CDI antibiotics were randomly assigned to SER-109 (4 capsules orally x 3 days) or placebo. Recurrence for this analysis was defined as ≥ 3 unformed stools/day for ≥ 48 hours, ± C. difficile stool toxin test, and an investigator decision to treat. Time to CDI recurrence was analyzed using observed data and Kaplan-Meier methods. Data were not imputed for subjects lost to follow-up or discontinued from study. Subjects who did not have a CDI recurrence were censored on the date of study completion, study discontinuation or death. Results Through 24 weeks, 11/89 (12.4%) SER-109 and 36/93 (38.7%) placebo subjects had rCDI (P < 0.001). Of all recurrence events in the study population, 16/47 (34.0%) were observed within 1 week; 30/47 (63.8%) within 2 weeks; and 34/47 (72.3%) within 4 weeks after randomization, highlighting the rapid onset of recurrence. On the other hand, 12/47 (25.5%) recurrences occurred between 4 and 12 weeks, highlighting late onset of recurrence in a subset of patients (Table). Significantly lower rates of recurrence in patients on SER-109 compared to placebo was maintained throughout the 24-week follow-up (Figure). Time of rCDI K-M Plot Conclusion SER-109, an investigational oral microbiome therapeutic, maintained significant efficacy in reducing rCDI vs placebo through 24 weeks. About two-thirds of all recurrences occurred within 14 days of antibiotic completion highlighting the need for rapid repair of the disrupted microbiome. However, the significant number of late recurrences in the placebo arm also highlights that rCDI trials limited to 4 weeks of follow-up after treatment completion may underestimate recurrences. Disclosures Thomas J. Louie, MD, Artugen (Advisor or Review Panel member)Crestone (Consultant, Grant/Research Support)Da Volterra (Advisor or Review Panel member)Finch Therapeutics (Grant/Research Support, Advisor or Review Panel member)MGB Biopharma (Grant/Research Support, Advisor or Review Panel member)Rebiotix (Consultant, Grant/Research Support)Seres Therapeutics (Consultant, Grant/Research Support)Summit PLC (Grant/Research Support)Vedanta (Grant/Research Support, Advisor or Review Panel member) Matthew Sims, MD, PhD, Astra Zeneca (Independent Contractor)Diasorin Molecular (Independent Contractor)Epigenomics Inc (Independent Contractor)Finch (Independent Contractor)Genentech (Independent Contractor)Janssen Pharmaceuticals NV (Independent Contractor)Kinevant Sciences gmBH (Independent Contractor)Leonard-Meron Biosciences (Independent Contractor)Merck and Co (Independent Contractor)OpGen (Independent Contractor)Prenosis (Independent Contractor)Regeneron Pharmaceuticals Inc (Independent Contractor)Seres Therapeutics Inc (Independent Contractor)Shire (Independent Contractor)Summit Therapeutics (Independent Contractor) Richard Nathan, DO, none (Other Financial or Material Support, I am PI on several clinical trials. If you need that information, I would be happy to supply it.) Princy N. Kumar, MD, AMGEN (Other Financial or Material Support, Honoraria)Eli Lilly (Grant/Research Support)Gilead (Grant/Research Support, Shareholder, Other Financial or Material Support, Honoraria)GSK (Grant/Research Support, Shareholder, Other Financial or Material Support, Honoraria)Merck & Co., Inc. (Grant/Research Support, Shareholder, Other Financial or Material Support, Honoraria) Elaine E. Wang, MD, Seres Therapeutics (Employee) Elaine E. Wang, MD, Seres Therapeutics (Employee, Shareholder) Robert Stevens, PharmD, Seres Therapeutics (Employee, Shareholder) Kelly Brady, MS, Seres Therapeutics (Employee, Shareholder) Barbara McGovern, MD, Seres Therapeutics (Employee, Shareholder) Lisa von Moltke, MD, Seres Therapeutics (Employee, Shareholder)


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3722 ◽  
Author(s):  
Mohd Azrul Naim ◽  
Hauke Smidt ◽  
Detmer Sipkema

Fungi and other eukaryotes represent one of the last frontiers of microbial diversity in the sponge holobiont. In this study we employed pyrosequencing of 18S ribosomal RNA gene amplicons containing the V7 and V8 hypervariable regions to explore the fungal diversity of seven sponge species from the North Sea and the Mediterranean Sea. For most sponges, fungi were present at a low relative abundance averaging 0.75% of the 18S rRNA gene reads. In total, 44 fungal OTUs (operational taxonomic units) were detected in sponges, and 28 of these OTUs were also found in seawater. Twenty-two of the sponge-associated OTUs were identified as yeasts (mainly Malasseziales), representing 84% of the fungal reads. Several OTUs were related to fungal sequences previously retrieved from other sponges, but all OTUs were also related to fungi from other biological sources, such as seawater, sediments, lakes and anaerobic digesters. Therefore our data, supported by currently available data, point in the direction of mostly accidental presence of fungi in sponges and do not support the existence of a sponge-specific fungal community.


Author(s):  
Yu Zhang ◽  
Ce Zhu ◽  
Guizhi Cao ◽  
Jingyu Zhan ◽  
Xiping Feng ◽  
...  

ObjectiveThis longitudinal study was aimed to evaluate the dynamic shift in oral microbiota during the process of halitosis progression among preschool children.MethodsThe oral examinations, questionnaires and tongue coating specimens were collected at the baseline and 12-month follow-up. All children were oral healthy at the enrollment. At the 12-month follow-up, children who developed halitosis were included to the halitosis group (n = 10). While children who matched the age, gender, kindergarten and without halitosis were included to the control group (n = 10). 16S rRNA gene sequencing was used to reveal the shift of the tongue coating microbiome in these children during the 12- month period with the Human Oral Microbiome Database.ResultsA remarkable shift in relative abundance of specific bacteria was observed prior to halitosis development. The principal coordinates and alpha diversity analyses revealed different shifting patterns of halitosis and the healthy participants’ microbiome structures and bacterial diversity over the 12-month follow-up. Both groups showed variable microbiota community structures before the onset of halitosis. Halitosis-enriched species Prevotella melaninogenica, Actinomyces sp._HMT_180 and Saccharibacteria TM7_G-1_bacterium_HMT_352 were finally selected as biomarkers in the halitosis-onset prediction model after screening, with a prediction accuracy of 91.7%.ConclusionsThe microbiome composition and relative abundance of the tongue coatings in the halitosis and control groups remarkably differed, even prior to the onset of the clinical manifestations of halitosis. The halitosis prediction model constructed on the basis of tongue coating microbiome biomarkers indicated the microbial shifts before the halitosis onset. Therefore, this can be considered for the timely detection and intervention of halitosis in children.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9235
Author(s):  
David A. Coil ◽  
Russell Y. Neches ◽  
Jenna M. Lang ◽  
Guillaume Jospin ◽  
Wendy E. Brown ◽  
...  

Background Every human being carries with them a collection of microbes, a collection that is likely both unique to that person, but also dynamic as a result of significant flux with the surrounding environment. The interaction of the human microbiome (i.e., the microbes that are found directly in contact with a person in places such as the gut, mouth, and skin) and the microbiome of accessory objects (e.g., shoes, clothing, phones, jewelry) is of potential interest to both epidemiology and the developing field of microbial forensics. Therefore, the microbiome of personal accessories are of interest because they serve as both a microbial source and sink for an individual, they may provide information about the microbial exposure experienced by an individual, and they can be sampled non-invasively. Findings We report here a large-scale study of the microbiome found on cell phones and shoes. Cell phones serve as a potential source and sink for skin and oral microbiome, while shoes can act as sampling devices for microbial environmental experience. Using 16S rRNA gene sequencing, we characterized the microbiome of thousands of paired sets of cell phones and shoes from individuals at sporting events, museums, and other venues around the United States. Conclusions We place this data in the context of previous studies and demonstrate that the microbiome of phones and shoes are different. This difference is driven largely by the presence of “environmental” taxa (taxa from groups that tend to be found in places like soil) on shoes and human-associated taxa (taxa from groups that are abundant in the human microbiome) on phones. This large dataset also contains many novel taxa, highlighting the fact that much of microbial diversity remains uncharacterized, even on commonplace objects.


Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Giulietta Minozzi ◽  
Filippo Biscarini ◽  
Emanuela Dalla Costa ◽  
Matteo Chincarini ◽  
Nicola Ferri ◽  
...  

The microbiome is now seen as an important resource to understand animal health and welfare in many species. However, there are few studies aiming at identifying the association between fecal microbiome composition and husbandry conditions in sheep. A wide range of stressors associated with management and housing of animals increases the hypothalamic–pituitary axis activity, with growing evidence that the microbiome composition can be modified. Therefore, the purpose of the present study was to describe the core microbiome in sheep, characterized using 16S rRNA gene sequencing, and to explore whether exposure to stressful husbandry conditions changed sheep hindgut microbiome composition. Sheep (n = 10) were divided in two groups: isolated group (individually separated for 3 h/day) and control group (housed in the home pen for the entire trial period). Sheep core microbiome was dominated by Firmicutes (43.6%), Bacteroidetes (30.38%), Proteobacteria (10.14%), and Verrucomicrobia (7.55%). Comparative results revealed few operational taxonomic units (OTUs) with significantly different relative abundance between groups. Chao1, abundance-based coverage estimator (ACE), and Fisher’s alpha indices did not show differences between groups. OTU-based Bray–Curtis distances between groups were not significant (p-value = 0.07). In conclusion, these results describing the core microbiome of sheep do not suggest a strong effect of stressful husbandry conditions on microbial composition.


Sign in / Sign up

Export Citation Format

Share Document