scholarly journals Quantitative and Qualitative Image Analysis of In Vitro Co-Culture 3D Tumor Spheroid Model by Employing Image-Processing Techniques

2021 ◽  
Vol 11 (10) ◽  
pp. 4636
Author(s):  
Mukta Sharma ◽  
Venkanagouda S. Goudar ◽  
Manohar Prasad Koduri ◽  
Fan Gang Tseng ◽  
Mahua Bhattacharya

This work proposes a novel region-estimation (RE) algorithm using the quantification of colon-cancer (HCT-8) and fibroblasts (NIH3T3) cells to estimate the densest region of colon-cancer cells in in vitro 3D co-cultured spheroids. Cells were labelled with different cell tracker dyes to track the cells. The technique involves staining cells with cell trackers The quantification of HCT-8 and NIH3T3 cells by the RE algorithm leads to distribution pattern analysis of cells from the core to the periphery, which ultimately estimates the densest region of HCT-8 cells in an in vitro 3D cell spheroid. Cell quantification by the RE algorithm was compared with the results of cell quantification by ImageJ software. Results demonstrated the distribution patterns of cells from the core to the peripheral region of the in vitro 3D cell spheroid. The overall experimentation showed that the proposed methodology outperformed state-of-the-art approaches in terms of segmentation, quantification, and reducing biasing error.

1985 ◽  
Vol 249 (5) ◽  
pp. C464-C470 ◽  
Author(s):  
D. A. Essig ◽  
S. S. Segal ◽  
T. P. White

We compared the structure, function, protein synthesis, and degradation of 70- to 95-mg rat soleus muscles during 120 min of incubation at 20 and 37 degrees C. At 37 degrees C, muscles were characterized by a damaged central core region and a decline of isometric tension development during incubation. Protein synthesis in the core region at 37 degrees C was depressed relative to the peripheral region. At 20 degrees C, developed tension remained constant during incubation, and synthesis rates in the core region were not different from the peripheral region. Compared with fresh muscle, ATP concentration after incubation was not affected by temperature. After equilibration of phenylalanine specific activity between extracellular and intracellular spaces (60 min at 20 degrees C; 30 min at 37 degrees C), rates of protein synthesis at 20 [0.048 nmol tyrosine (Tyr) X mg wet mass-1 X 2 h-1] and 37 degrees C (0.160 nmol Tyr X mg wet mass-1 X 2 h-1) were linear up to 180 and 120 min, respectively. Rates of protein degradation at 20 (0.076 nmol Tyr X mg wet mass-1 X 2 h-1) and 37 degrees C (0.248 nmol Tyr X mg wet mass-1 X 2 h-1) measured after 60 min were linear up to 180 and 120 min, respectively. Incubation at 20 degrees C offers an approach to study 70- to 95-mg muscles in vitro without compromising structure and function.


2020 ◽  
Vol 21 (7) ◽  
pp. 2559 ◽  
Author(s):  
Joyce Nair-Menon ◽  
Amanda C. Daulagala ◽  
Dean M. Connor ◽  
Lauren Rutledge ◽  
Trevor Penix ◽  
...  

The RNA interference (RNAi) machinery is an essential component of the cell, regulating miRNA biogenesis and function. RNAi complexes were thought to localize either in the nucleus, such as the microprocessor, or in the cytoplasm, such as the RNA-induced silencing complex (RISC). We recently revealed that the core microprocessor components DROSHA and DGCR8, as well as the main components of RISC, including Ago2, also associate with the apical adherens junctions of well-differentiated cultured epithelial cells. Here, we demonstrate that the localization of the core RNAi components is specific and predominant at apical areas of cell-cell contact of human normal colon epithelial tissues and normal primary colon epithelial cells. Importantly, the apical junctional localization of RNAi proteins is disrupted or lost in human colon tumors and in poorly differentiated colon cancer cell lines, correlating with the dysregulation of the adherens junction component PLEKHA7. We show that the restoration of PLEKHA7 expression at adherens junctions of aggressively tumorigenic colon cancer cells restores the junctional localization of RNAi components and suppresses cancer cell growth in vitro and in vivo. In summary, this work identifies the apical junctional localization of the RNAi machinery as a key feature of the differentiated colonic epithelium, with a putative tumor suppressing function.


Author(s):  
U. Aebi ◽  
L.E. Buhle ◽  
W.E. Fowler

Many important supramolecular structures such as filaments, microtubules, virus capsids and certain membrane proteins and bacterial cell walls exist as ordered polymers or two-dimensional crystalline arrays in vivo. In several instances it has been possible to induce soluble proteins to form ordered polymers or two-dimensional crystalline arrays in vitro. In both cases a combination of electron microscopy of negatively stained specimens with analog or digital image processing techniques has proven extremely useful for elucidating the molecular and supramolecular organization of the constituent proteins. However from the reconstructed stain exclusion patterns it is often difficult to identify distinct stain excluding regions with specific protein subunits. To this end it has been demonstrated that in some cases this ambiguity can be resolved by a combination of stoichiometric labeling of the ordered structures with subunit-specific antibody fragments (e.g. Fab) and image processing of the electron micrographs recorded from labeled and unlabeled structures.


Author(s):  
Mayson H. Alkhatib ◽  
Dalal Al-Saedi ◽  
Wadiah S. Backer

The combination of anticancer drugs in nanoparticles has great potential as a promising strategy to maximize efficacies by eradicating resistant, reduce the dosage of the drug and minimize toxicities on the normal cells. Gemcitabine (GEM), a nucleoside analogue, and atorvastatin (ATV), a cholesterol lowering agent, have shown anticancer effect with some limitations. The objective of this in vitro study was to evaluate the antitumor activity of the combination therapy of GEM and ATVencapsulated in a microemulsion (ME) formulation in the HCT116 colon cancer cells. The cytotoxicity and efficacy of the formulation were assessed by the 3- (4,5dimethylthiazole-2-yl)-2,5-diphyneltetrazolium bromide (MTT) assay. The mechanism of cell death was examined by observing the morphological changes of treated cells under light microscope, identifying apoptosis by using the ApopNexin apoptosis detection kit, and viewing the morphological changes in the chromatin structure stained with 4′,6-diamidino-2-phenylindole (DAPI) under the inverted fluorescence microscope. It has been found that reducing the concentration of GEM loaded on ME (GEM-ME) from 5μM to 1.67μM by combining it with 3.33μM of ATV in a ME formulation (GEM/2ATV-ME) has preserved the strong cytotoxicity of GEM-ME against HCT116 cells. The current study proved that formulating GEM with ATV in ME has improved the therapeutic potential of GEM and ATV as anticancer drugs.


Author(s):  
Sahil Kumar ◽  
Bandna Sharma ◽  
Tilak R. Bhardwaj ◽  
Rajesh K. Singh

Aims: In the present study, polymer-drug conjugates were synthesized based on azo-bond cleavage drug delivery approach for targeting erlotinib as anticancer drug specifically to the colon for the proficient treatment of colon cancer. Background: Colon cancer (CC) is the third commonly detected tumor worldwide and it make up about 10 % of all cases of cancers. Most of the chemotherapeutic drugs available for treating colon cancer are not only toxic to cancerous cells but also to the normal healthy cells. Among the various approaches to get rid of the adverse effects of anticancer agents, prodrugs are one of the most imperative approaches. Objective: The objective of the study is to chemically modify the erlotinib drug through azo-bond linkage and suitable spacer which will be finally linked to polymeric backbone to give desired polymer linked prodrug. The azo reductase enzyme present in colon is supposed to cleave the azo-bond specifically and augment the drug release at the colon. Methods: The synthesized conjugates were characterized by IR and 1H-NMR spectroscopy. The cleavage of aromatic azobond resulted in a potential colon-specific liberation of drug from conjugate studied in rat fecal contents. In vitro release profiles of polyphosphazene-linked conjugates of erlotinib have been studied at pH 1.2, pH 6.8 and pH 7.4. The stability study was designed to exhibit that free drug was released proficiently and unmodified from polyphosphazene-erlotinib conjugates having aromatic azo-bond in artificial colon conditions. Results: The synthesized conjugates were demonstrated to be stable in simulated upper gastro-intestinal tract conditions. The drug release kinetics shows that all the polymer-drug conjugates of erlotinib follow zero-order release kinetics which indicates that the drug release from the polymeric backbone is independent of its concentration. Kinetic study of conjugates with slope (n) shows the anomalous type of release with an exponent (n) > 0.89 indicating a super case II type of release. Conclusion: These studies indicate that polyphosphazene linked drug conjugates of erlotinib could be the promising candidates for the site-specific treatment of colon cancer with least detrimental side-effects.


2018 ◽  
Vol 18 (5) ◽  
pp. 719-738 ◽  
Author(s):  
Vinit Raj ◽  
Amit Rai ◽  
Ashok K. Singh ◽  
Amit K. Keshari ◽  
Prakruti Trivedi ◽  
...  

Background: Colon cancer is one of the most widespread disease, the mortality rate is high due to cancer metastasis and the development of drug resistance. In this regards, new chemotherapeutic agents with specific mechanisms of action and significant effect on patient’s survival are the new era for the colon cancer drug development. Objective: The main objective of present study was to design, synthesize of a novel series of 1,3,4-thiadiazole derivatives (VR1 to VR35) and screen them against HT-29 human colon cancer cell line. Method: Newly 1,3,4-thiadiazole scaffold were designed, synthesized and further, characterized by FTIR, NMR (1H and 13C), MS and elemental analyses. Before the synthesis, molecular dynamic simulation and ADME studies were performed to find out the most potent lead compounds. Later, SRB assay using HT-29 cells and ELISA assays were performed to explore activity and molecular targets of VR24 and VR27 and find out whether in silico data had a similar pattern in the molecular level. Results: The results of docking study revealed that both VR24 and VR27 had interaction energy >-5 kcal/mol with various assigned molecular targets and the ligand-protein complexes were found to be stable with IL-6. The computational analysis of molecules showed good ADMET profiling. Later, the in vitro anticancer study was conducted where VR24 and VR27 were found to be active against HT-29 cells (GI50<10 µM). Finally, ELISA assays revealed that both the compounds had higher inhibition properties to various biomarker of colon cancer like IL-6 and COX-2. Conclusion: Collectively, these result suggested that VR24 and VR27 inhibited the assigned molecular targets, imparting their ameliorative effects against colon cancer. Due to these encouraging results, we concluded that both VR24 and VR27 may be effective against colon cancer therapy in future.


Author(s):  
Mattias Lepsenyi ◽  
Nader Algethami ◽  
Amr A. Al-Haidari ◽  
Anwar Algaber ◽  
Ingvar Syk ◽  
...  

AbstractPeritoneal metastasis is an insidious aspect of colorectal cancer. The aim of the present study was to define mechanisms regulating colon cancer cell adhesion and spread to peritoneal wounds after abdominal surgery. Mice was laparotomized and injected intraperitoneally with CT-26 colon carcinoma cells and metastatic noduli in the peritoneal cavity was quantified after treatment with a CXCR2 antagonist or integrin-αV-antibody. CT-26 cells expressed cell surface chemokine receptors CXCR2, CXCR3, CXCR4 and CXCR5. Stimulation with the CXCR2 ligand, CXCL2, dose-dependently increased proliferation and migration of CT-26 cells in vitro. The CXCR2 antagonist, SB225002, dose-dependently decreased CXCL2-induced proliferation and migration of colon cancer cells in vitro. Intraperitoneal administration of CT-26 colon cancer cells resulted in wide-spread growth of metastatic nodules at the peritoneal surface of laparotomized animals. Laparotomy increased gene expression of CXCL2 at the incisional line. Pretreatment with CXCR2 antagonist reduced metastatic nodules by 70%. Moreover, stimulation with CXCL2 increased CT-26 cell adhesion to extracellular matrix (ECM) proteins in a CXCR2-dependent manner. CT-26 cells expressed the αV, β1 and β3 integrin subunits and immunoneutralization of αV abolished CXCL2-triggered adhesion of CT-26 to vitronectin, fibronectin and fibrinogen. Finally, inhibition of the αV integrin significantly attenuated the number of carcinomatosis nodules by 69% in laparotomized mice. These results were validated by use of the human colon cancer cell line HT-29 in vitro. Our data show that colon cancer cell adhesion and growth on peritoneal wound sites is mediated by a CXCL2-CXCR2 signaling axis and αV integrin-dependent adhesion to ECM proteins.


Sign in / Sign up

Export Citation Format

Share Document