scholarly journals Nanoencapsulation of Essential Oils as Natural Food Antimicrobial Agents: An Overview

2021 ◽  
Vol 11 (13) ◽  
pp. 5778
Author(s):  
Wei Liao ◽  
Waisudin Badri ◽  
Emilie Dumas ◽  
Sami Ghnimi ◽  
Abdelhamid Elaissari ◽  
...  

The global demand for safe and healthy food with minimal synthetic preservatives is continuously increasing. Natural food antimicrobials and especially essential oils (EOs) possess strong antimicrobial activities that could play a remarkable role as a novel source of food preservatives. Despite the excellent efficacy of EOs, they have not been widely used in the food industry due to some major intrinsic barriers, such as low water solubility, bioavailability, volatility, and stability in food systems. Recent advances in nanotechnology have the potential to address these existing barriers in order to use EOs as preservatives in food systems at low doses. Thus, in this review, we explored the latest advances of using natural actives as antimicrobial agents and the different strategies for nanoencapsulation used for this purpose. The state of the art concerning the antibacterial properties of EOs will be summarized, and the main latest applications of nanoencapsulated antimicrobial agents in food systems will be presented. This review should help researchers to better choose the most suitable encapsulation techniques and materials.

2009 ◽  
Vol 3 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Hend A. Hamedo ◽  
Hala M. Abdelmigid

In this study, investigations were carried out to assess the efficiency of two plant essential oils; rosemary and oregano as natural food preservatives. The effect of the plant essential oils at concentrations of 0.1%, 0.5% and 1% was studied in the soft cheese against Salmonella enteritidis and Escherichia coli at fridge temprature over a 14-day period. The essential oils performed well in the inhibition of S. enteritidis and E. coli. It is concluded that selected plant essential oils can act as potent inhibitors of both microorganisms in a food product. At the same time, evaluation of their safety as food preservatives was undertaken via monitoring the genotoxic activity of the mentioned essential oils using Vicia faba test. Vicia faba roots were treated with the above concentrations for 3 hours. Results revealed cytotoxic and genotoxic effects of the applied doses. Mitotic index decreased significantly when compared to control. Chromosomal abnormalities and micronuclei were also observed and the effects were dose-dependent. Despite the efficient role of the studied oils as antimicrobial agents, their genotoxicity potential in eukaryotic cells made them unacceptable as food preservatives, particularly at high doses. Therefore, more research in the use of essential oils as food preservatives is needed.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1267
Author(s):  
Nagaraj Basavegowda ◽  
Kwang-Hyun Baek

The development of food-borne and infectious diseases has increased globally at an anomalous rate and is combined with emerging social and economic problems. This highlights the need for new and improved antibacterial agents with novel and different mechanisms of action at regular intervals. Some chemical or artificial food additives are considered harmful if they are used beyond their permissible levels. Today, consumers are demanding alternative, green, safer, and natural food additives to increase the shelf life of food. Essential oils (EOs) are concentrated liquid mixtures of volatile compounds with antioxidant and antibacterial properties that can be used as natural, eco-friendly, renewable, and cost-effective additives. The use of combinations of different EOs and their components is a promising strategy to increase the synergistic and additive effects of EOs in foods. In this article, we review the recent literature on EOs concerning the chemical constituents, extraction methods, antioxidant and antibacterial activities, and their mechanisms of action. Additionally, we discuss the synergistic interaction of different EOs and their components, challenges, and future directions of EOs as natural food preservatives, with special emphasis on shelf life extension and applications in the packaging of food products.


2013 ◽  
Vol 2 (3) ◽  
pp. 65 ◽  
Author(s):  
Djamel Djenane ◽  
Javier Yangüela ◽  
Pedro Roncalés ◽  
Mohammed Aider

<p>The steam distillation-extracted essential oils (EOs) of three aromatic plants from the Kabylie region of Algeria (<em>Eucalyptus globulus</em>, <em>Lavandula angustifolia</em>, and <em>Satureja hortensis</em>) were analyzed by gas chromatography coupled with mass spectrometry (GC/MS). The primary compounds from these EOs were 1,8-cineole (81.70%) for <em>Eucalyptus globulus</em>, 1,8-cineole (37.80%) and Beta-caryophyllene (20.90%) for <em>Lavandula angustifolia</em>, and carvacrol (46.10%), p-cymene (12.04%), and r-terpinene (11.43%) for <em>Satureja hortensis</em>. To test the antibacterial properties of the EOs, agar diffusion and microdilution methods were used for <em>Salmonella enterica</em> serovar Enteritidis CECT 4300. The results revealed that all of the EOs possessed a significant anti-Salmonella activity. The inhibition diameters for <em>Lavandula angustifolia</em> and Eucalyptus globulus were 41.30 and 35.26 mm, respectively, whereas the essential oil (EO) of <em>Satureja hortensis</em> showed a stronger anti-Salmonella activity (51.15 mm) when compared to the two other EOs. The minimum inhibitory concentration values ranged from 1 to 8 uL/mL, and the MIC value of the <em>Lavandula angustifolia</em> EO was the lowest (1 uL/mL). Moreover, the anti-Salmonella activity of the EOs added at various concentrations to liquid whole eggs was investigated, and the results showed that the antibacterial effect is proportional to the quantity of EO added to the product. Based on the observed anti-Salmonella activity, the EOs tested are promising natural alternatives for the preservation of liquid whole eggs stored at 7 ± 1ºC to simulate Algerian refrigeration conditions.</p>


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5487
Author(s):  
Wasiu Olalekan Afolabi ◽  
Ahmed Hussein ◽  
Francis Oluwole Shode ◽  
Marilize Le Roes-Hill ◽  
Fanie Rautenbach

Leptospermum petersonii (family Myrtaceae) is often cultivated for ornamental purposes but also serves as a rich source of bioactive essential oils. While several studies focused on the activities of the essential oils, this study analysed the potential of spent L. petersonii leaves as a natural food preservative. Method: We investigated the in vitro antioxidant and antimicrobial activities of crude L. petersonii extracts against activities of the purified isolated flavonoid, 6-methyltectochrysin, which was characterized using spectroscopic methods. The antioxidant assays followed ORAC, FRAP and TEAC tests. The antimicrobial activities of the extract and purified flavonoid were analysed against six multi-drug resistant microbial strains in broth dilution assays. Result: The results revealed that both the crude extracts and isolated 6-methyltectochrysin exhibited positive radical ion scavenging antioxidant potential, however the crude extract was about 6-fold more potent antioxidant than the purified 6-methyltectochrysin. The crude extract also showed strong antimicrobial activities against Bacillus cereus, and even more potent antimicrobial agent than the reference ampicillin antibiotic against Klebsiella pneumoniae subsp. pneumoniae. A higher resistance was observed for the tested Gram-negative strains than for the Gram-positive ones. 6-methyltectochrysin was generally inactive in the antimicrobial assays. Conclusion: The crude methanolic extract showed significant bioactivity which validates the medicinal relevance of the plant. The observed biological activities, especially against a notorious strain of B. cereus, suggest that L. petersonii could be a promising natural source of food preservatives.


2014 ◽  
Vol 9 (12) ◽  
pp. 1934578X1400901 ◽  
Author(s):  
Wan Mohd Nuzul Hakimi Wan Salleh ◽  
Farediah Ahmad ◽  
Khong Heng Yen

The study was designed to examine the chemical composition and antimicrobial activities of essential oils extracted from the aerial parts of three Piper species: Piper abbreviatum, P. erecticaule and P. lanatum, all from Malaysia. GC and GC/MS analysis showed qualitative and quantitative differences between these oils. GC and GC-MS analysis of P. abbreviatum, P. erecticaule and P. lanatum oils resulted in the identification of 33, 35 and 39 components, representing 70.5%, 63.4% and 78.2% of the components, respectively. The major components of P. abbreviatum oil were spathulenol (11.2%), ( E)-nerolidol (8.5%) and β-caryophyllene (7.8%), whereas P. erecticaule oil mainly contained β-caryophyllene (5.7%) and spathulenol (5.1%). Borneol (7.5%), β-caryophyllene (6.6%) and α-amorphene (5.6%) were the most abundant components in P. lanatum oil. Antimicrobial activity was carried out using disc diffusion and broth micro-dilution method against nine microorganisms. All of the essential oils displayed weak activity towards Gram-positive bacteria with MIC values in the range 250–500 μg/mL. P. erecticaule oil showed the best activity on Aspergillus niger (MIC 31.3 μg/mL), followed by P. lanatum oil (MIC 62.5 μg/mL). This study demonstrated that the essential oils have potential as antimicrobial agents and may be useful in the pharmaceutical and cosmetics industries.


Antibiotics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 344
Author(s):  
Gabriele Meroni ◽  
Elena Cardin ◽  
Charlotte Rendina ◽  
Valentina Rafaela Herrera Millar ◽  
Joel Fernando Soares Filipe ◽  
...  

Essential oils (EOs) and honeybee products (e.g., honey and propolis) are natural mixtures of different volatile compounds that are frequently used in traditional medicine and for pathogen eradication. The aim of this study was to evaluate the antibacterial properties of tea tree (Melaleuca alternifolia) EO (TTEO), Rosmarinus officinalis EO (ROEO), manuka-based gel, and propolis against 23 strains of Staphylococcus pseudintermedius (SP) isolated from canine pyoderma. Antimicrobial resistance screening was assessed using a panel of nine antimicrobial agents coupled with a PCR approach. An aromatogram was done for both EOs, using the disk diffusion method. The minimum inhibitory concentration (MIC) was determined for all the compounds. Among the 23 SP strains, 14 (60.9%) were multidrug-resistant (MDR), 11 strains (47.8%) were methicillin-resistant (MRSP), and 9 (39.1%) were non-MDR. The mean diameter of the inhibition zone for Melaleuca and Rosmarinus were 24.5 ± 8.8 mm and 15.2 ± 8.9 mm, respectively, resulting as statistically different (p = 0.0006). MIC values of TTEO and ROEO were similar (7.6 ± 3.2% and 8.9 ± 2.1%, respectively) and no statistical significances were found. Honeybee products showed lower MIC compared to those of EOs, 0.22 ± 0.1% for Manuka and 0.8 ± 0.5% for propolis. These findings reveal a significant antibacterial effect for all the tested products.


Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 564
Author(s):  
Cássia H. Barbosa ◽  
Mariana A. Andrade ◽  
Fernanda Vilarinho ◽  
Isabel Castanheira ◽  
Ana Luísa Fernando ◽  
...  

Cardoon, Cynara cardunculus L., is a perennial plant whose flowers are used as vegetal rennet in cheese making. Cardoon is native from the Mediterranean area and is commonly used in the preparation of salads and soup dishes. Nowadays, cardoon is also being exploited for the production of energy, generating large amount of wastes, mainly leaves. These wastes are rich in bioactive compounds with important health benefits. The aim of this review is to highlight the main properties of cardoon leaves according to the current research and to explore its potential uses in different sectors, namely the food industry. Cardoon leaves are recognized to have potential health benefits. In fact, some studies indicated that cardoon leaves could have diuretic, hepato-protective, choleretic, hypocholesterolemic, anti-carcinogenic, and antibacterial properties. Most of these properties are due to excellent polyphenol profiles, with interesting antioxidant and antimicrobial activities. These findings indicate that cardoon leaves can have new potential uses in different sectors, such as cosmetics and the food industry; in particular, they can be used for the preparation of extracts to incorporate into active food packaging. In the future, these new uses of cardoon leaves will allow for zero waste of this crop.


2016 ◽  
Vol 34 (2) ◽  
pp. 35
Author(s):  
Prayna P. P. Maharaj ◽  
Riteshma Devi ◽  
Surendra Prasad

Fiji is highly populated with plants containing essential oils (EO). The essential oils extracted from the leaves of the selected Fijian leafy plants were screened against two Gram-negative bacteria (Salmonella typhimurium, Pseudomonas aeruginosa) and three Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis and Bacillus subtilis). The agar diffusion method was used to examine the antimicrobial activities of the extracted EO. All the EO tested showed antibacterial properties against one or more strains while none of the EO was active against Pseudomonas aeruginosa. Viburnum lantana (Wayfaring tree), Annona muricata (Soursop), Coleus amboinicus (Spanish thyme) and Cinnamomum zeylancium (Cinnamon) showed good inhibition against both Gram-positive and Gram-negative bacteria and proved as worthy source of antimicrobial agent. These findings will help the Pacific population to use the studied plants leaves as antimicrobial agent.


2009 ◽  
pp. 195-209 ◽  
Author(s):  
Marija Skrinjar ◽  
Nevena Nemet

Spices and herbs have been used as food additives since ancient times, as flavouring agents but also as natural food preservatives. A number of spices shows antimicrobial activity against different types of microorganisms. This article gives a literature review of recent investigations considering antimicrobial activity of essential oils widely used spices and herbs, such as garlic, mustard, cinnamon, cumin, clove, bay, thyme, basil, oregano, pepper, ginger, sage, rosemary etc., against most common bacteria and fungi that contaminate food (Listeria spp., Staphylococcus spp., Salmonella spp., Escherichia spp., Pseudomonas spp., Aspergillus spp., Cladosporium spp. and many others). Antimicrobial activity depends on the type of spice or herb, type of food and microorganism, as well as on the chemical composition and content of extracts and essential oils. Summarizing results of different investigations, relative antimicrobial effectiveness can be made, and it shows that cinnamon, cloves and mustrad have very strong antimicrobial potential, cumin, oregano, sage, thyme and rosemary show medium inhibitory effect, and spices such as pepper and ginger have weak inhibitory effect.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2328
Author(s):  
Yuanpeng Hao ◽  
Jingyi Li ◽  
Wenying Zhang ◽  
Meiyu Sun ◽  
Hui Li ◽  
...  

The use of antibiotics in the food industry is highly regulated owing to the potential harmful effects of antibiotics on human health. Therefore, it is crucial to seek alternatives for ensuring food safety. Essential oils (EOs) extracted from plants of the genus Origanum exhibit a wide range of chemical and antibacterial activities. Species and tissue factors shape the production and accumulation processes of EOs in Origanum plants, thereby affecting their bactericidal activity. In this study, the morphologies and EO yields from the inflorescences, leaves, and stems of three oregano cultivars were evaluated. In addition, the chemical compositions and antibacterial abilities of oregano EOs (OEOs) were assessed. The results showed that OEOs from the different parts of the plant displayed only minor differences in chemical composition, whereas the yield of EOs varied considerably. Additionally, the chemical profiles of OEOs differed significantly among cultivars. The carvacrol content in the OEOs was closely related to its activity against Staphylococcus aureus; the antibacterial properties of the OEOs were further verified using carvacrol. These findings suggested that OEOs possessing high antibacterial activity may have the potential to be developed as bactericides in the food industry.


Sign in / Sign up

Export Citation Format

Share Document