scholarly journals Tensile Buckling of a Rod with an End Moving along a Circular Guide: Improved Experimental Investigation Based on a Dynamic Approach

2021 ◽  
Vol 11 (16) ◽  
pp. 7277
Author(s):  
Boris Blostotsky ◽  
Elia Efraim ◽  
Yuri Ribakov

Investigation of buckling under tension is highly important from theoretical and practical viewpoints to ensure safety and the proper performance of mechanical systems. In the present work, tensile buckling is investigated experimentally, and the critical force is measured in systems where one end of an elastic tensile rod slides along a straight guide, while the other slides along a curve. An experimental setup is proposed and developed for determining the critical tensile load of the elastic rod by a dynamic method. This setup allows measuring free vibrations and frequency with the required accuracy. Improvement of the critical load accuracy is achieved by approaching the maximum load to the critical one. Limitations in selecting the test parameters are found according to the required extrapolation accuracy of the dominant natural vibration frequency dependence on tensile load. Theoretical analysis and tests are performed for the rod connection schemes pinned–rigid, rigid–pinned, and rigid–rigid, considering imperfections in the fixation of the rod ends. It is experimentally shown that the system buckling at tensile load is possible and that experimental and theoretical values of the critical load are in good agreement. The achieved accuracy, estimated by the discrepancy between the calculated and the experimental values, is 2.1–3.5%.

2020 ◽  
Vol 75 (8) ◽  
pp. 739-747
Author(s):  
Feng Hu ◽  
Yan Sun ◽  
Maofei Mei

AbstractComplete and consistent atomic data, including excitation energies, lifetimes, wavelengths, hyperfine structures, Landé gJ-factors and E1, E2, M1, and M2 line strengths, oscillator strengths, transitions rates are reported for the low-lying 41 levels of Mo XXVIII, belonging to the n = 3 states (1s22s22p6)3s23p3, 3s3p4, and 3s23p23d. High-accuracy calculations have been performed as benchmarks in the request for accurate treatments of relativity, electron correlation, and quantum electrodynamic (QED) effects in multi-valence-electron systems. Comparisons are made between the present two data sets, as well as with the experimental results and the experimentally compiled energy values of the National Institute for Standards and Technology wherever available. The calculated values including core-valence correction are found to be in a good agreement with other theoretical and experimental values. The present results are accurate enough for identification and deblending of emission lines involving the n = 3 levels, and are also useful for modeling and diagnosing plasmas.


2014 ◽  
Vol 12 (2) ◽  
pp. 153-163
Author(s):  
Viktor Anishchenko ◽  
Vladimir Rybachenko ◽  
Konstantin Chotiy ◽  
Andrey Redko

AbstractDFT calculations of vibrational spectra of chlorophosphates using wide range of basis sets and hybrid functionals were performed. Good agreement between calculated and experimental vibrational spectra was reached by the combination of non-empirical functional PBE0 with both middle and large basis sets. The frequencies of the stretching vibrations of the phosphate group calculated using semi-empirical functional B3LYP for all basis sets deviate significantly from the experimental values. The number of polarization functions on heavy atoms was shown to be a key factor for the calculation of vibrational frequencies of organophosphates. The importance of consideration of all the stable rotamers for a complete assignment of fundamental modes was shown.


2009 ◽  
Vol 417-418 ◽  
pp. 881-884 ◽  
Author(s):  
Jian Yu Zhang ◽  
Rui Bao ◽  
Bin Jun Fei

As more aircrafts reach or exceed their design life, it is becoming very important to research multiple cracks damage, especially the multiple site damage (MSD) in order to re-evaluate their service life and damage tolerance/durability performance. The existing of MSD may remarkably reduce the residual strength of an aerospace structural component than those with a singe lead crack. This study investigated the residual strength of aluminum alloy sheet with MSD through three types of aluminum specimens test. Aluminum panels with bare collinear constant diameter holes were chosen as specimens. After some constant amplitude tension-tension load cycles, the MSD were found in these specimens since there were multiple fatigue cracks emanating from the saw cuts of holes. The residual strength was recorded as the maximum load when every specimen was subjected to monotonically increasing tensile load until failure occurred. In different failure prediction criteria that were often used in engineering in order to evaluate the accuracy of these criteria, Swift criterion (ligament yield) criterion got more accurate prediction results than other criteria. Although Swift criterion was more accurate than some other criteria, its error was still big for some specimens. Two modified approaches were proposed in order to get more accurate and appropriate failure criterion for MSD structure.


2014 ◽  
Vol 32 (3) ◽  
pp. 350-357
Author(s):  
Purvee Bhardwaj

AbstractIn the present paper, the structural and mechanical properties of alkaline earth oxides mixed compound SrxCd1−x O (0 ≤ x ≤ 1) under high pressure have been reported. An extended interaction potential (EIP) model, including the zero point vibrational energy effect, has been developed for this study. Phase transition pressures are associated with a sudden collapse in volume. Phase transition pressure and associated volume collapses [ΔV (Pt)/V(0)] calculated from this approach are in good agreement with the experimental values for the parent compounds (x = 0 and x = 1). The results for the mixed crystal counterparts are also in fair agreement with experimental data generated from the application of Vegard’s law to the data for the parent compounds.


2007 ◽  
Vol 546-549 ◽  
pp. 447-450
Author(s):  
Tian Mo Liu ◽  
Hong Yi Zhou ◽  
Fu Sheng Pan

In the present work Miedema model has been developed, and the formation enthalpy of Mg-Zn alloys and the activity curve of Zn in Mg-Zn alloy at 1000K have been calculated according to the Miedema model. The calculation results showed that the formation enthalpy of Mg-Zn was small, and the excess entropy attributes a lot to the result. When excess enthopy was considered, the calculation results were found to be in good agreement with the experimental values.


Anthracene acts as a radical scavenger when present at low concentrations in irradiated hydrocarbons. A study has been made of the effect of radiation intensity and anthracene concentration on G( — A) , the number of anthracene molecules lost per 100 eV of energy absorbed. A theoretical calculation is made of the dependence of G( — A) on radiation intensity 1 and anthracene concentration ( A ), assuming that radiation-induced radicals (R.) are formed at random, and can either disappear by direct combination with one another, or with the anthracene to give RAR or RAAR bridges, or possibly some form of stabilized RA molecules. This theory is in good agreement with the experimental values of G( — A) measured at various low radiation intensities and anthracene concentrations. From the comparison estimates of the reactivity constants are derived. With very high intensity radiation quantitative agreement is less satisfactory, due to the non-steady conditions prevailing in a pulsed beam. The results obtained are compared with previous work on anthracene + hexane and iodine + cyclo hexane mixtures, in which the effect of radiation intensity was not investigated. The results reported here are of interest to the study of reaction kinetics in irradiated organic systems.


2019 ◽  
Vol 32 (1) ◽  
pp. 174-182
Author(s):  
S. Amala ◽  
G. Rajarajan ◽  
E. Dhineshkumar ◽  
M. Arockia doss ◽  
V. Thanikachalam

The structures of newly synthesized compounds (1-3) viz. 3-ethyl-5-methyl-2,6-bis(4- chlorophenyl)piperidin-1-ium picrate (1), 3-ethyl-5-methyl-2,6-bis(4-methylphenyl)piperidin-1-ium picrate (2) and 3-ethyl-5-methyl-2,6-bis(3,4-dimethoxyphenyl)piperidin-1-ium picrate (3) were confirmed by elemental analysis, FT-IR, 1H and 13C NMR. The UV-visible spectra, fluoresence, emission properties of synthesized 1-3 in different solvents were studied. Compounds 1-3 solvatochromic displays a slight effect of the emission and absorption spectrum, indicating a small change in the dipole moment upon excitation of compounds 1-3. All the compounds were investigated by DFT. The theoretical geometrical parameters are in good agreement with experimental values.


Atoms ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 18 ◽  
Author(s):  
Pascal Quinet ◽  
Patrick Palmeri

The main purpose of the Database on Rare Earths At Mons University (DREAM) is to provide the scientific community with updated spectroscopic parameters related to lanthanide atoms (Z = 57–71) in their lowest ionization stages. The radiative parameters (oscillator strengths and transitions probabilities) listed in the database have been obtained over the past 20 years by the Atomic Physics and Astrophysics group of Mons University, Belgium, thanks to a systematic and extensive use of the pseudo-relativistic Hartree-Fock (HFR) method modified for taking core-polarization and core-penetration effects into account. Most of these theoretical results have been validated by the good agreement obtained when comparing computed radiative lifetimes and accurate experimental values measured by the time-resolved laser-induced fluorescence technique. In the present paper, we report on the current status and developments of the database that gathers radiative parameters for more than 72,000 spectral lines in neutral, singly-, doubly-, and triply-ionized lanthanides.


1971 ◽  
Vol 26 (11) ◽  
pp. 1926-1928 ◽  
Author(s):  
W. E. Köhler

The magnetic Senftleben-Beenakker effect of the viscosity is mainly determined by two collision integrals of the linearized quantum mechanical Waldmann-Snider collision term, viz. by the relaxation coefficient of the tensor polarization of the molecular rotational angular momenta and by the coefficient which couples the friction pressure tensor and the tensor polarization. Starting from a simple nonspherical potential for HD, the scattering amplitude is evaluated analytically in first order distorted wave Born approximation and the two collision integrals are calculated for room temperature. A fairly good agreement with experimental values is found.


2006 ◽  
Vol 20 (01) ◽  
pp. 49-61 ◽  
Author(s):  
F. BENKABOU

We have used the molecular-dynamic method for the calculation of the structural, dynamic and elastic properties of group BeS , BeSe and BeTe compounds for temperature ranging from 300 to 1200 K. Tersoff potential has been used to model the interaction between the groups II–VI compound atoms. The structural properties of cubic BeS , BeSe and BeTe have been calculated, and good agreement between the calculated and experimental values have been found. We have also predicted the elastic constants and diffusion coefficients of BeS , BeSe and BeTe . The values found compare very well with the theoretical results. For the temperature range under study, all elastic constants and dynamic properties show a softening with increasing temperature very similar to the theoretical calculations.


Sign in / Sign up

Export Citation Format

Share Document