scholarly journals Targeted Protein Profiling of In Vivo NIPP-Treated Tissues Using DigiWest Technology

2021 ◽  
Vol 11 (23) ◽  
pp. 11238
Author(s):  
Felix Ruoff ◽  
Melanie Henes ◽  
Markus Templin ◽  
Markus Enderle ◽  
Hans Bösmüller ◽  
...  

Non-invasive physical plasma (NIPP) is a novel therapeutic tool, currently being evaluated for the treatment of cancer and precancerous lesions in gynecology and other disciplines. Additionally, patients with cervical intraepithelial neoplasia (CIN) may benefit from NIPP treatment due to its non-invasive, side-effect-free, and tissue-sparing character. However, the molecular impact of in vivo NIPP treatment needs to be further investigated. For this purpose, usually only very small tissue biopsies are available after NIPP treatment. Here, we adapted DigiWest technology, a high-throughput bead-based Western blot, for the analysis of formalin-fixed paraffin-embedded (FFPE) cervical punch biopsies with a minimal sample amount. We investigated the molecular effects of NIPP treatment directly after (0 h) and 24 h after in vivo application. Results were compared to in vitro NIPP-treated human malignant cervical cells. NIPP effects were primarily based on an inhibitory impact on the cell cycle and cell growth factors. DigiWest technology was suitable for detailed protein profiling of small, primary FFPE biopsies.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Skaidre Jankovskaja ◽  
Johan Engblom ◽  
Melinda Rezeli ◽  
György Marko-Varga ◽  
Tautgirdas Ruzgas ◽  
...  

AbstractThe tryptophan to kynurenine ratio (Trp/Kyn) has been proposed as a cancer biomarker. Non-invasive topical sampling of Trp/Kyn can therefore serve as a promising concept for skin cancer diagnostics. By performing in vitro pig skin permeability studies, we conclude that non-invasive topical sampling of Trp and Kyn is feasible. We explore the influence of different experimental conditions, which are relevant for the clinical in vivo setting, such as pH variations, sampling time, and microbial degradation of Trp and Kyn. The permeabilities of Trp and Kyn are overall similar. However, the permeated Trp/Kyn ratio is generally higher than unity due to endogenous Trp, which should be taken into account to obtain a non-biased Trp/Kyn ratio accurately reflecting systemic concentrations. Additionally, prolonged sampling time is associated with bacterial Trp and Kyn degradation and should be considered in a clinical setting. Finally, the experimental results are supported by the four permeation pathways model, predicting that the hydrophilic Trp and Kyn molecules mainly permeate through lipid defects (i.e., the porous pathway). However, the hydrophobic indole ring of Trp is suggested to result in a small but noticeable relative increase of Trp diffusion via pathways across the SC lipid lamellae, while the shunt pathway is proposed to slightly favor permeation of Kyn relative to Trp.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii13-ii13
Author(s):  
Wangxian Gu ◽  
Guoqing Wan ◽  
Yanjun Zheng ◽  
Xintong Yang ◽  
Peng Zhang ◽  
...  

Abstract Diacylglycerol kinase (DGK) is a lipid kinase that catalyzes the phosphorylation of diacylglycerol (DAG) to produce phosphatidic acid (PA), which uses ATP as a phosphate donor. Diacylglycerol kinases ζ(DGKζ) is characterized as specific type IV due to its myristoylated alanine-rich C-kinase substrate (MARCKS), ankyrin, and PDZ binding domain. Similar to other DGKs, DGKζ is also reported to be abnormally expressed in human colorectal cancer cells, and it is indispensable for the proliferation of cancer cells. However, its implications in human glioblastoma (GBM) is largely unknown. Both the mRNA and protein levels of DGKζ were significantly higher in GBM tissues than in precancerous lesions. Knockdown of DGKζ inhibited GBM cell proliferation, cell cycle and promoted apoptosis of GBM cells. Moreover, down-regulation of DGKζ markedly reduced in vitro colony formation and in vivo tumorigenic capability. Furthermore, we confirmed that DGKζ was the downstream target of miR-34a. The expression level of DGKζ was negatively correlated with miR-34a in GBM tissues. Overexpression of DGKζ reversed the tumor suppressive roles of miR-34a in GBM cells. Taken together, DGKζ can act as a potential prognostic biomarker for GBM patients and promote the growth of GBM cells was regulated by miR-34a, and it may represent a promising therapeutic target for patients with GBM.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 181
Author(s):  
Loredana G. Marcu ◽  
Eva Bezak ◽  
Dylan D. Peukert ◽  
Puthenparampil Wilson

FLASH radiotherapy, or the administration of ultra-high dose rate radiotherapy, is a new radiation delivery method that aims to widen the therapeutic window in radiotherapy. Thus far, most in vitro and in vivo results show a real potential of FLASH to offer superior normal tissue sparing compared to conventionally delivered radiation. While there are several postulations behind the differential behaviour among normal and cancer cells under FLASH, the full spectra of radiobiological mechanisms are yet to be clarified. Currently the number of devices delivering FLASH dose rate is few and is mainly limited to experimental and modified linear accelerators. Nevertheless, FLASH research is increasing with new developments in all the main areas: radiobiology, technology and clinical research. This paper presents the current status of FLASH radiotherapy with the aforementioned aspects in mind, but also to highlight the existing challenges and future prospects to overcome them.


2011 ◽  
Vol 10 (9) ◽  
pp. 890-890 ◽  
Author(s):  
Natalie Artzi ◽  
Nuria Oliva ◽  
Cristina Puron ◽  
Sagi Shitreet ◽  
Shay Artzi ◽  
...  

2015 ◽  
Vol 51 (32) ◽  
pp. 6948-6951 ◽  
Author(s):  
Yanfeng Zhang ◽  
Qian Yin ◽  
Jonathan Yen ◽  
Joanne Li ◽  
Hanze Ying ◽  
...  

Anin vitroandin vivodrug-reporting system is developed for real-time monitoring of drug release via the analysis of the concurrently released near-infrared fluorescence dye.


2012 ◽  
Vol 20 (1) ◽  
pp. 123-136 ◽  
Author(s):  
Colette Meyer ◽  
Andrew H Sims ◽  
Kevin Morgan ◽  
Beth Harrison ◽  
Morwenna Muir ◽  
...  

GNRH significantly inhibits proliferation of a proportion of cancer cell lines by activating GNRH receptor (GNRHR)-G protein signaling. Therefore, manipulation of GNRHR signaling may have an under-utilized role in treating certain breast and ovarian cancers. However, the precise signaling pathways necessary for the effect and the features of cellular responses remain poorly defined. We used transcriptomic and proteomic profiling approaches to characterize the effects of GNRHR activation in sensitive cells (HEK293-GNRHR, SCL60)in vitroandin vivo, compared to unresponsive HEK293. Analyses of gene expression demonstrated a dynamic response to the GNRH superagonist Triptorelin. Early and mid-phase changes (0.5–1.0 h) comprised mainly transcription factors. Later changes (8–24 h) included a GNRH target gene,CGA, and up- or downregulation of transcripts encoding signaling and cell division machinery. Pathway analysis identified altered MAPK and cell cycle pathways, consistent with occurrence of G2/M arrest and apoptosis. Nuclear factor kappa B (NF-κB) pathway gene transcripts were differentially expressed between control and Triptorelin-treated SCL60 cultures. Reverse-phase protein and phospho-proteomic array analyses profiled responses in cultured cells and SCL60 xenograftsin vivoduring Triptorelin anti-proliferation. Increased phosphorylated NF-κB (p65) occurred in SCL60in vitro, and p-NF-κB and IκBε were higher in treated xenografts than controls after 4 days Triptorelin. NF-κB inhibition enhanced the anti-proliferative effect of Triptorelin in SCL60 cultures. This study reveals details of pathways interacting with intense GNRHR signaling, identifies potential anti-proliferative target genes, and implicates the NF-κB survival pathway as a node for enhancing GNRH agonist-induced anti-proliferation.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tereza Cindrova-Davies ◽  
Xiaohui Zhao ◽  
Kay Elder ◽  
Carolyn J. P. Jones ◽  
Ashley Moffett ◽  
...  

AbstractAssessment of the endometrium often necessitates a biopsy, which currently involves an invasive, transcervical procedure. Here, we present an alternative technique based on deriving organoids from menstrual flow. We demonstrate that organoids can be derived from gland fragments recovered from menstrual flow. To confirm they faithfully reflect the in vivo state we compared organoids derived from paired scratch biopsies and ensuing menstrual flow from patients undergoing in vitro fertilisation (IVF). We demonstrate that the two sets of organoids share the same transcriptome signature, derivation efficiency and proliferation rate. Furthermore, they respond similarly to sex steroids and early-pregnancy hormones, with changes in morphology, receptor expression, and production of ‘uterine milk’ proteins that mimic those during the late-secretory phase and early pregnancy. This technique has wide-ranging impact for non-invasive investigation and personalised approaches to treatment of common gynaecological conditions, such as endometriosis, and reproductive disorders, including failed implantation after IVF and recurrent miscarriage.


Author(s):  
Huiming Chen ◽  
Junfeng Zhao ◽  
Ningning Jiang ◽  
Zheng Wang ◽  
Chang Liu

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases, with a 5-year survival rate of less than 10% because of the limited knowledge of tumor-promoting factors and their underlying mechanism. Diabetes mellitus (DM) and hyperglycemia are risk factors for many cancers, including PDAC, that modulate multiple downstream signaling pathways, such as the wingless/integrated (Wnt)/β-catenin signaling pathway. However, whether hyperglycemia promotes PDAC initiation and progression by activating the Wnt/β-catenin signaling pathway remains unclear. Methods: In this study, we used bioinformatics analysis and clinical specimen analysis to evaluate the activation states of the Wnt/βcatenin signaling pathway. In addition, colony formation assays, Transwell assays and wound-healing assays were used to evaluate the malignant biological behaviors of pancreatic cancer cells (PCs) under hyperglycemic conditions. To describe the effects of hyperglycemia and the Wnt/β-catenin signaling pathway on the initiation of PDAC, we used pancreatitis-driven pancreatic cancer initiation models in vivo and pancreatic acinar cell 3-dimensional culture in vitro. Results: Wnt/β-catenin signaling pathway-related molecules were overexpressed in PDAC tissues/cells and correlated with poor prognosis in PDAC patients. In addition, hyperglycemia exacerbated the abnormal activation of β-catenin in PDAC and enhanced the malignant biological behaviors of PCs in a Wnt/β-catenin signaling pathway-dependent manner. Indeed, hyperglycemia accelerated the formation of pancreatic precancerous lesions by activating the Wnt/β-catenin signaling pathway in vivo and in vitro. Conclusion: Hyperglycemia promotes pancreatic cancer initiation and progression by activating the Wnt/β-catenin signaling pathway.


2021 ◽  
Vol 3 (Supplement_2) ◽  
pp. ii9-ii9
Author(s):  
Tamara Lah Turnsek ◽  
Barbara Breznik ◽  
Bernarda Majc ◽  
Metka Novak ◽  
Andrej Porčnik ◽  
...  

Abstract Epithelial-to-mesenchymal transition (EMT) is an essential molecular and cellular process in physiologic processes and invasion of various types of carcinoma and glioblastoma (GBM) cells. EMT is activated and regulated by specific endogenous triggers in complex network of intercellular interactions and signaling pathways. The hallmark of cancer-linked EMT are intermediate states that show notable cell plasticity, characteristic of cancer stem cells (CSCs), including glioblastoma stem cells – GSCs. GSCs resistance to irradiation (IR) and temozolomide (TMZ) chemotherapy is responsible for early relapses, even at distant brain sites. As GSCs are mostly homing to their “niches” as slowly-dividing GSC-subtype, mimicking a proneural-like non- invasive phenotype PN-genotype, we assume that this, by undergoing an EMT-like transition, GSCs are-reprogrammed to an invasive mesenchymal (MES) GBs/GSCs phenotype in a processes, called PMT (1). However, it is not known, if and by which environmental cues within the niche, this transition of GSCs is induced in vivo. In this work, we are presenting the transriptome data obtained when we exposed GSC spheroids to irradiation alone, TMZ alone and to the combined treatment in vitro and compared their differential genetic fingerprints related to EMT/PMT transition to the GSCs PMT transition, when embedded in their natural microenvironment in the GBM organoid model. The differential gene expression upon GSCs therapeutic perturbation (when alone and vs in the tumoroid microenvironment) will reveal the effects of the major candidate genes, associated with micronevironmendt stromal cells and matrix are contributing their observed EMT/PMT transition of GSCs in vivo. •1. Majc, B., Sever, T., Zarić, M, Breznik, B., Turk, B, Lah Turnšek, T. Epithelial- to-mesenchymal transition as the driver of changing carcinoma and glioblastoma microenvironment. DOI: 10.1016/j.bbamcr.2020.118782


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 43
Author(s):  
Victoria O. Shipunova ◽  
Vera L. Kovalenko ◽  
Polina A. Kotelnikova ◽  
Anna S. Sogomonyan ◽  
Olga N. Shilova ◽  
...  

The development of non-invasive photothermal therapy (PTT) methods utilizing nanoparticles as sensitizers is one of the most promising directions in modern oncology. Nanoparticles loaded with photothermal dyes are capable of delivering a sufficient amount of a therapeutic substance and releasing it with the desired kinetics in vivo. However, the effectiveness of oncotherapy methods, including PTT, is often limited due to poor penetration of sensitizers into the tumor, especially into solid tumors of epithelial origin characterized by tight cellular junctions. In this work, we synthesized 200 nm nanoparticles from the biocompatible copolymer of lactic and glycolic acid, PLGA, loaded with magnesium phthalocyanine, PLGA/Pht-Mg. The PLGA/Pht-Mg particles under the irradiation with NIR light (808 nm), heat the surrounding solution by 40 °C. The effectiveness of using such particles for cancer cells elimination was demonstrated in 2D culture in vitro and in our original 3D model with multicellular spheroids possessing tight cell contacts. It was shown that the mean inhibitory concentration of such nanoparticles upon light irradiation for 15 min worsens by more than an order of magnitude: IC50 increases from 3 µg/mL for 2D culture vs. 117 µg/mL for 3D culture. However, when using the JO-4 intercellular junction opener protein, which causes a short epithelial–mesenchymal transition and transiently opens intercellular junctions in epithelial cells, the efficiency of nanoparticles in 3D culture was comparable or even outperforming that for 2D (IC50 = 1.9 µg/mL with JO-4). Synergy in the co-administration of PTT nanosensitizers and JO-4 protein was found to retain in vivo using orthotopic tumors of BALB/c mice: we demonstrated that the efficiency in the delivery of such nanoparticles to the tumor is 2.5 times increased when PLGA/Pht-Mg nanoparticles are administered together with JO-4. Thus the targeting the tumor cell junctions can significantly increase the performance of PTT nanosensitizers.


Sign in / Sign up

Export Citation Format

Share Document