scholarly journals Virtual Reality Training Application for the Condition-Based Maintenance of Induction Motors

2022 ◽  
Vol 12 (1) ◽  
pp. 414
Author(s):  
David Checa ◽  
Juan José Saucedo-Dorantes ◽  
Roque Alfredo Osornio-Rios ◽  
José Alfonso Antonino-Daviu ◽  
Andrés Bustillo

The incorporation of new technologies as training methods, such as virtual reality (VR), facilitates instruction when compared to traditional approaches, which have shown strong limitations in their ability to engage young students who have grown up in the smartphone culture of continuous entertainment. Moreover, not all educational centers or organizations are able to incorporate specialized labs or equipment for training and instruction. Using VR applications, it is possible to reproduce training programs with a high rate of similarity to real programs, filling the gap in traditional training. In addition, it reduces unnecessary investment and prevents economic losses, avoiding unnecessary damage to laboratory equipment. The contribution of this work focuses on the development of a VR-based teaching and training application for the condition-based maintenance of induction motors. The novelty of this research relies mainly on the use of natural interactions with the VR environment and the design’s optimization of the VR application in terms of the proposed teaching topics. The application is comprised of two training modules. The first module is focused on the main components of induction motors, the assembly of workbenches and familiarization with induction motor components. The second module employs motor current signature analysis (MCSA) to detect induction motor failures, such as broken rotor bars, misalignments, unbalances, and gradual wear on gear case teeth. Finally, the usability of this VR tool has been validated with both graduate and undergraduate students, assuring the suitability of this tool for: (1) learning basic knowledge and (2) training in practical skills related to the condition-based maintenance of induction motors.

2021 ◽  
Author(s):  
David Checa ◽  
Andres Bustillo ◽  
Juan Jose Saucedo-Dorantes ◽  
Roque Alfredo Osornio-Rios ◽  
Irving Armando Cruz-Albarran

2021 ◽  
Vol 27 (4) ◽  
Author(s):  
Francisco Lara

AbstractCan Artificial Intelligence (AI) be more effective than human instruction for the moral enhancement of people? The author argues that it only would be if the use of this technology were aimed at increasing the individual's capacity to reflectively decide for themselves, rather than at directly influencing behaviour. To support this, it is shown how a disregard for personal autonomy, in particular, invalidates the main proposals for applying new technologies, both biomedical and AI-based, to moral enhancement. As an alternative to these proposals, this article proposes a virtual assistant that, through dialogue, neutrality and virtual reality technologies, can teach users to make better moral decisions on their own. The author concludes that, as long as certain precautions are taken in its design, such an assistant could do this better than a human instructor adopting the same educational methodology.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4663
Author(s):  
Janaina Cavalcanti ◽  
Victor Valls ◽  
Manuel Contero ◽  
David Fonseca

An effective warning attracts attention, elicits knowledge, and enables compliance behavior. Game mechanics, which are directly linked to human desires, stand out as training, evaluation, and improvement tools. Immersive virtual reality (VR) facilitates training without risk to participants, evaluates the impact of an incorrect action/decision, and creates a smart training environment. The present study analyzes the user experience in a gamified virtual environment of risks using the HTC Vive head-mounted display. The game was developed in the Unreal game engine and consisted of a walk-through maze composed of evident dangers and different signaling variables while user action data were recorded. To demonstrate which aspects provide better interaction, experience, perception and memory, three different warning configurations (dynamic, static and smart) and two different levels of danger (low and high) were presented. To properly assess the impact of the experience, we conducted a survey about personality and knowledge before and after using the game. We proceeded with the qualitative approach by using questions in a bipolar laddering assessment that was compared with the recorded data during the game. The findings indicate that when users are engaged in VR, they tend to test the consequences of their actions rather than maintaining safety. The results also reveal that textual signal variables are not accessed when users are faced with the stress factor of time. Progress is needed in implementing new technologies for warnings and advance notifications to improve the evaluation of human behavior in virtual environments of high-risk surroundings.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii461-iii461
Author(s):  
Andrea Carai ◽  
Angela Mastronuzzi ◽  
Giovanna Stefania Colafati ◽  
Paul Voicu ◽  
Nicola Onorini ◽  
...  

Abstract Tridimensional (3D) rendering of volumetric neuroimaging is increasingly been used to assist surgical management of brain tumors. New technologies allowing immersive virtual reality (VR) visualization of obtained models offer the opportunity to appreciate neuroanatomical details and spatial relationship between the tumor and normal neuroanatomical structures to a level never seen before. We present our preliminary experience with the Surgical Theatre, a commercially available 3D VR system, in 60 consecutive neurosurgical oncology cases. 3D models were developed from volumetric CT scans and MR standard and advanced sequences. The system allows the loading of 6 different layers at the same time, with the possibility to modulate opacity and threshold in real time. Use of the 3D VR was used during preoperative planning allowing a better definition of surgical strategy. A tailored craniotomy and brain dissection can be simulated in advanced and precisely performed in the OR, connecting the system to intraoperative neuronavigation. Smaller blood vessels are generally not included in the 3D rendering, however, real-time intraoperative threshold modulation of the 3D model assisted in their identification improving surgical confidence and safety during the procedure. VR was also used offline, both before and after surgery, in the setting of case discussion within the neurosurgical team and during MDT discussion. Finally, 3D VR was used during informed consent, improving communication with families and young patients. 3D VR allows to tailor surgical strategies to the single patient, contributing to procedural safety and efficacy and to the global improvement of neurosurgical oncology care.


2021 ◽  
Vol 11 (5) ◽  
pp. 222
Author(s):  
Rafael Darque Pinto ◽  
Bruno Peixoto ◽  
Miguel Melo ◽  
Luciana Cabral ◽  
Maximino Bessa

Virtual reality has shown to have great potential as an educational tool when it comes to new learning methods. With the growth and dissemination of this technology, there is a massive opportunity for teachers to add this technology to their methods of teaching a second/foreign language, since students keep showing a growing interest in new technologies. This systematic review of empirical research aims at understanding whether the use of gaming strategies in virtual reality is beneficial for the learning of a second/foreign language or not. Results show that more than half of the articles proved that virtual reality technologies with gaming strategies can be used to learn a foreign language. It was also found that “learning” was the most evaluated dependent variable among the chosen records, augmented reality was the leading technology used, primary education and lower secondary was the most researched school stages, and the most used language to evaluate the use of gamified technology was by far the English language. Given the lack of directed investigation, it is recommended to use these technologies to support second language learning and not entirely replace traditional approaches. A research agenda is also proposed by the authors.


2021 ◽  
Vol 1 (1) ◽  
pp. 40-49
Author(s):  
S. Rachev ◽  
K. Dimitrova ◽  
D. Koeva ◽  
L. Dimitrov

During the operation of electric induction motors used to drive passenger elevators, electro-mechanical transient processes occur, which can cause unacceptable dynamic loads and vibrations. In this regard, research is needed both at the design stage and for operating elevator systems to determine the arising impact currents and torques, in order to propose solutions for their limitation within pre-set limits. Paper deals with starting processes in a two-speed induction motor drive of a passenger elevator. The equations for the voltages of the induction motor are presented in relative units in a coordinate system rotating at a synchronous speed. The values have been obtained for the torques, the rotational frequencies and the currents when starting at a high speed and passing from high to low speed.


2010 ◽  
Vol 50 (12) ◽  
pp. 991 ◽  
Author(s):  
J. B. Rowe

Changes in the sheep industry over the last 20 years represent a trend that is unlikely to be reversed. The farm gate value of wool production has decreased from over $6 billion to ~$2.5 billion and the value of sheep meat has increased from $0.5 to $2.2 billion. Wool and meat are now on an equal footing in terms of the economic value of each sector of the industry. Future profitability of both wool and sheep meat production depends on achieving a high rate of productivity gain and improving quality attributes valued by consumers. Wool and sheep meat cannot compete on price or volume with synthetics and cotton in the textile market or with chicken and pork in the meat market. Differentiation based on quality and consistency needs to be measurable and clearly understood by consumers. The combination of genetic selection and good management can deliver improved productivity gain. Skills development and training will be essential for the industry to fully utilise available knowledge and new technologies.


2014 ◽  
Vol 577 ◽  
pp. 498-501
Author(s):  
Jiu Yan Zhou

In order to analysis the variable-voltage energy saving theory and its implementation for induction motor with light-load in detail, This paper gives out a variable-voltage energy saving method, and discusses the design of variable frequency adjusting speed control and the points of attention. It is useful for the application of energy saving technology for induction motors.


2018 ◽  
Vol 215 ◽  
pp. 01023 ◽  
Author(s):  
Zuriman Anthony ◽  
Erhaneli Erhaneli ◽  
Zulkarnaini Zulkarnaini

A 1-phase induction motor usually has a complicated windings design which compares to polyphase induction motor. In addition, a large capacitor start is required to operate the motor. It is an expensive way to operate the motor if it compare to polyphase induction motor. So, a new innovation method is required to make the motor more simple and cheaper. This research is purposed to study a new winding design for a single-phase capacitor motor. Winding design of the motor was conducted to a simple winding design like a 4-phase induction motor that has four identical windings. The comparator motor that use in this study was a Three-phase induction motor with data 1400 RPM, 1.5 HP, 50Hz, 380/220V, Y/Δ, 2.74/4.7A, 4 poles, that had the same current rating which the proposed method. The result showed that the motor design on this proposed method could be operated at 88.18 % power rating with power factor close to unity.


2021 ◽  
Vol 5 (1) ◽  
pp. 51-62
Author(s):  
Adnan Ahmed ◽  
Abdul Majeed Shaikh ◽  
Muhammad Fawad Shaikh ◽  
Shoaib Ahmed Shaikh ◽  
Jahangir Badar Soomro

Induction motors are widely used from home to industrial applications. Speed of induction motor plays important role, so to control the speed of induction motor various techniques are adopted and one of these techniques is V/F control, which is adopted in this paper. This technique helps to control the speed in open control system in RPM. Moreover, Control is designed in LabVIEW, it is quite helpful to develop the circuit graphically and code is automatically written in the background to run on Field Programmable Gate Array (FPGA). The aim of this research is to study the impacts on diverse parameters during speed control of three phase induction machine with manipulation of GPIC. Solar technology is used as input source to drive the General-Purpose Inverter Controller (GPIC). Apart of this, impacts of modulation index and carrier frequency influencing the active, reactive and apparent power, temperature and power quality and current overshoot is analysed. MATLAB/Simulink and LabVIEW tools are used for simulation and results along with GPIC, Induction motor and solar panel as hardware.


Sign in / Sign up

Export Citation Format

Share Document