scholarly journals Implementing Circular Economy Strategies in Buildings—From Theory to Practice

2021 ◽  
Vol 4 (2) ◽  
pp. 26
Author(s):  
Kamel Mohamed Rahla ◽  
Ricardo Mateus ◽  
Luís Bragança

Population growth, along with a rapid urban expansion, is imposing a heavy pressure on the planet’s finite resources. It is widely acknowledged that the building industry consumes large amounts of raw materials while generating waste and emissions. To set apart economic growth from environmental repercussions, the Circular Economy (CE) arose as an innovative paradigm that can offer a fast-track towards a sustainable built environment. This paper will tackle a research gap that academia and policymakers often highlighted, which is how can we apply CE to assets that are predominantly meant to be demolished and their resources wasted when they reach their end-of-life. Globally, the paradigm aims at erasing the waste concept, relying on renewable and regenerative sources, and keeping the materials, components, and systems in use at their highest value as long as possible. The concept’s implementation would attempt to consider the built environment as a closed-loop system wherein resources are viewed as a scarce commodity. Although the CE seems straightforward, translating the circular thinking to the building level might be a hardship. The following paper will attempt to shed light on how to promote CE in buildings that will ultimately lead to healthier, more efficient, and more sustainable cities on a broader scale. The proposed framework considers CE implementation strategies throughout the building’s lifecycle and mainly deals with three innovative aspects: wise resource management, building design approaches, and digitalization of the building industry. In this sense, this study will explore these game-changing factors that are considered paramount to concretize the concept in practice and provide a smooth pathway for CE uptake in buildings.

2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Smitha J.S ◽  
Albert Thomas

Sustainable development aims at minimising waste and reducing exploitation of natural resources and energy, so that needs of the future generations are taken care of. Circular Economy (CE) is a new drift towards sustainability that aims at minimising waste and promoting material reuse, thereby creating a regenerative system. The construction industry is responsible for the extraction of raw materials and the generation of waste in large quantities, thereby making it an opportune sector for transition to a circular economy. On account of the complex nature of the built environment comprising various phases and associated actors, a proper framework or indexing for the circular economy is missing at present. This study aims to develop an integrated model of CE in the built environment which considers various construction stages and applicable strategies. An index for measuring the circularity potential in construction materials is also proposed, based on attributes developed from literature review and analysis of questionnaire survey. Simple Additive Weighting Method (SAWM), an elementary multi-criteria decision-making method is used for developing the index. It is anticipated that Circular Economy Potential Index (CEPI) would support decision-making in the initial stage of construction projects and help to compare the circularity of materials.


Buildings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 77 ◽  
Author(s):  
Jouri Kanters

Circular building design could significantly reduce the environmental impact of buildings and the pressure on natural resources. However, most buildings today are not designed according to the principles of the circular economy. Most literature has focused on either methods for quantifying the lifecycle analysis of buildings and materials, or on innovative circular building materials, but not much is known about the design process of circular buildings and how architects are dealing with translating the principles of the circular economy to the building sector. A series of semi-structured interviews with architects and consultants that have engaged in circular building design has been conducted to identify the barriers and drivers of the transformation towards a circular building sector. Interviews were analysed using qualitative coding analysis. The conservativeness of the building industry, the lack of political priority and the dependency throughout the building industry were found to be the main barriers, while a supportive client with a well-defined assignment and idea was considered to be the main driver. The contribution of this paper to key actors in the building sector is to identify the main barriers and drivers for a circular building sector.


2020 ◽  
Vol 19 (4) ◽  
pp. 598-617 ◽  
Author(s):  
S.V. Ratner

Subject. The article considers the concept of circular economy, which has originated relatively recently in the academic literature, and is now increasingly recognized in many countries at the national level. In the European Union, the transition to circular economy is viewed as an opportunity to improve competitiveness of the European Union, protect businesses from resource shortages and fluctuating prices for raw materials and supplies, and a way to increase employment and innovation. Objectives. The aim of the study is to analyze the incentives developed by the European Commission for moving to circular economy, and to assess their effectiveness on the basis of statistical analysis. Methods. I employ general scientific methods of research. Results. The analysis of the EU Action Plan for the Circular Economy enabled to conclude that the results of the recent research in circular economy barriers, eco-innovation, technology and infrastructure were successfully integrated into the framework of this document. Understanding the root causes holding back the circular economy development and the balanced combination of economic and administrative incentives strengthened the Action Plan, and it contributed to the circular economy development in the EU. Conclusions. The measures to stimulate the development of the circular economy proposed in the European Action Plan can be viewed as a prototype for designing similar strategies in other countries, including Russia. Meanwhile, a more detailed analysis of barriers to the circular economy at the level of individual countries and regions is needed.


2021 ◽  
Vol 13 (4) ◽  
pp. 1899
Author(s):  
Fabiana Gatto ◽  
Ilaria Re

Reducing the environmental pressure along the products life cycle, increasing efficiency in the consumption of resources and use of renewable raw materials, and shifting the economic system toward a circular and a climate-neutral model represent the heart of the current macro-trends of the European Union (EU) policy agendas. The circular economy and bioeconomy concepts introduced in the EU’s Circular Economy Action Plan and the Bioeconomy Strategy support innovation in rethinking economic systems focusing on market uptaking of greener solutions based on less-intensive resource consumption. In recent decades, industrial research has devoted enormous investments to demonstrate sustainable circular bio-based business models capable of overcoming the “Valley of Death” through alternative strategic orientations of “technological-push” and “market-pull”. The study highlights industrial research’s evolution on bio-based circular business model validation, trends, and topics with particular attention to the empowering capacity of start-ups and small and medium-sized enterprises (SMEs) to close the loops in renewable biological use and reduce dependence on fossil fuels. The research methodology involves a bibliographic search based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach and the European Innovation Council (EIC) Accelerator Data Hub investigation to understand SMEs’ key success factors and start-ups of the circular bioeconomy sector. Eco and bio-based materials, nutraceuticals, and microalgae represent the most sustainable industry applications, leading to circular bioeconomy business models’ future perspective.


Author(s):  
Paola Sangiorgio ◽  
Alessandra Verardi ◽  
Salvatore Dimatteo ◽  
Anna Spagnoletta ◽  
Stefania Moliterni ◽  
...  

AbstractThe increase in the world population leads to rising demand and consumption of plastic raw materials; only a small percentage of plastics is recovered and recycled, increasing the quantity of waste released into the environment and losing its economic value. The plastics represent a great opportunity in the circular perspective of their reuse and recycling. Research is moving, on the one hand, to implement sustainable systems for plastic waste management and on the other to find new non-fossil-based plastics such as polyhydroxyalkanoates (PHAs). In this review, we focus our attention on Tenebrio molitor (TM) as a valuable solution for plastic biodegradation and biological recovery of new biopolymers (e.g. PHA) from plastic-producing microorganisms, exploiting its highly diversified gut microbiota. TM’s use for plastic pollution management is controversial. However, TM microbiota is recognised as a source of plastic-degrading microorganisms. TM-based plastic degradation is improved by co-feeding with food loss and waste as a dietary energy source, thus valorising these low-value substrates in a circular economy perspective. TM as a bioreactor is a valid alternative to traditional PHA recovery systems with the advantage of obtaining, in addition to highly pure PHA, protein biomass and rearing waste from which to produce fertilisers, chitin/chitosan, biochar and biodiesel. Finally, we describe the critical aspects of these TM-based approaches, mainly related to TM mass production, eventual food safety problems, possible release of microplastics and lack of dedicated legislation.


2021 ◽  
Vol 13 (8) ◽  
pp. 4394
Author(s):  
Margarita Ignatyeva ◽  
Vera Yurak ◽  
Alexey Dushin ◽  
Vladimir Strovsky ◽  
Sergey Zavyalov ◽  
...  

Nowadays, circular economy (CE) is on the agenda, however, this concept of closed supply chains originated in the 1960s. The current growing quantity of studies in this area accounts for different discourses except the holistic one, which mixes both approaches—contextual and operating (contextual approach utilizes the thorough examination of the CE theory, stricture of the policy, etc.; the operating one uses any kind of statistical data)—to assess the capacity of circular economy regulatory policy packages (CERPP) in operating raw materials and industrial wastes. This article demonstrates new guidelines for assessing the degree level of capacity (DLC) of CERPPs in the operation of raw materials and industrial wastes by utilizing the apparatus of the fuzzy set theory. It scrupulously surveys current CERPPs in three regions: the EU overall, Finland and Russia; and assesses for eight regions—the EU overall, Finland, Russia, China, Greece, France, the Netherlands and South Korea—the DLC of CERPPs in operating raw materials and industrial wastes. The results show that EU is the best in CE policy and its CERPP is 3R. The following are South Korea and China with the same type of CERPP. Finland, France and the Netherlands have worse results than EU with the type of CERPP called “integrated waste management” because of the absence of a waste hierarchy (reduce, recover, recycle). Russia closes the list with the type of CERPP “basic waste management”.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4312
Author(s):  
Marzena Smol

Circular economy (CE) is an economic model, in which raw materials remain in circulation as long as possible and the generation of waste is minimized. In the fertilizer sector, waste rich in nutrients should be directed to agriculture purposes. This paper presents an analysis of recommended directions for the use of nutrient-rich waste in fertilizer sector and an evaluation of possible interest in this kind of fertilizer by a selected group of end-users (nurseries). The scope of research includes the state-of-the-art analysis on circular aspects and recommended directions in the CE implementation in the fertilizer sector (with focus on sewage-based waste), and survey analysis on the potential interest of nurseries in the use of waste-based fertilizers in Poland. There are more and more recommendations for the use of waste for agriculture purposes at European and national levels. The waste-based products have to meet certain requirements in order to put such products on the marker. Nurserymen are interested in contributing to the process of transformation towards the CE model in Poland; however, they are not fully convinced due to a lack of experience in the use of waste-based products and a lack of social acceptance and health risk in this regard. Further actions to build the social acceptance of waste-based fertilizers, and the education of end-users themselves in their application is required.


2021 ◽  
Vol 13 (11) ◽  
pp. 6348
Author(s):  
Sultan Çetin ◽  
Catherine De Wolf ◽  
Nancy Bocken

Digital technologies are considered to be an essential enabler of the circular economy in various industries. However, to date, very few studies have investigated which digital technologies could enable the circular economy in the built environment. This study specifically focuses on the built environment as one of the largest, most energy- and material-intensive industries globally, and investigates the following question: which digital technologies potentially enable a circular economy in the built environment, and in what ways? The research uses an iterative stepwise method: (1) framework development based on regenerating, narrowing, slowing and closing resource loop principles; (2) expert workshops to understand the usage of digital technologies in a circular built environment; (3) a literature and practice review to further populate the emerging framework with relevant digital technologies; and (4) the final mapping of digital technologies onto the framework. This study develops a novel Circular Digital Built Environment framework. It identifies and maps ten enabling digital technologies to facilitate a circular economy in the built environment. These include: (1) additive/robotic manufacturing, (2) artificial intelligence, (3) big data and analytics, (4) blockchain technology, (5) building information modelling, (6) digital platforms/marketplaces, (7) digital twins, (8) the geographical information system, (9) material passports/databanks, and (10) the internet of things. The framework provides a fruitful starting point for the novel research avenue at the intersection of circular economy, digital technology and the built environment, and gives practitioners inspiration for sustainable innovation in the sector.


2021 ◽  
Vol 13 (2) ◽  
pp. 754
Author(s):  
H.-Ping Tserng ◽  
Cheng-Mo Chou ◽  
Yun-Tsui Chang

The building industry is blamed for consuming enormous natural resources and creating massive solid waste worldwide. In response to this, the concept of circular economy (CE) has gained much attention in the sector in recent years. Many pilot building projects that implemented CE concepts started to appear around the world, including Taiwan. However, compared with the pilot projects in the Netherlands, which are regarded as the pioneer ones by international society, many CE-related practices are not implemented in pilot cases in Taiwan. To assist future project stakeholders to recognize what the key CE-related practices are and how they could be implemented in their building projects in Taiwan, this study has conducted a series of case studies of Dutch and Taiwanese pilot projects and semi-structured interviews with key project stakeholders of Taiwanese pilot projects. Thirty key CE-related practices are identified via case studies, along with their related 5R principles (Rethink, Reduce, Reuse, Repair, Recycle) and project phases. Suggestion on CE-related practices, their 5R principles, project items, and phases to implement in building projects in Taiwan is also proposed while discussion on differences between two countries’ pilot projects is presented.


2019 ◽  
Vol 11 (13) ◽  
pp. 3512 ◽  
Author(s):  
Antonia Gravagnuolo ◽  
Mariarosaria Angrisano ◽  
Luigi Fusco Girard

The circular city is emerging as new concept and form of practice in sustainable urban development. This is a response to the complex and pressing challenges of urbanization, as highlighted in the New Urban Agenda (NUA). The concept of a “circular city” or “circular city-region” derives from the circular economy model applied in the spatial territorial dimension. It can be associated with the concept of a “self-sustainable” regenerative city, as stated in paragraph n.71 of the NUA. This paper aims to develop an extensive form of “screening” of circular economy actions in emerging circular cities, focusing on eight European historic port cities self-defined as “circular”. The analysis is carried out as a review of circular economy actions in the selected cities, and specifically aims to identify the key areas of implementation in which the investments in the circular economy are more oriented, as well as to analyze the spatial implications of the reuse of buildings and sites, proposing a set of criteria and indicators for ex-ante and ex-post evaluations and monitoring of circular cities. Results show that the built environment (including cultural heritage), energy and mobility, waste management, water management, industrial production (including plastics, textiles, and industry 4.0 and circular design), agri-food, and citizens and communities can be adopted as strategic areas of implementation of the circular city model in historic cities, highlighting a lack of indicators in some sectors and identifying a possible framework for “closed” urban metabolism evaluation from a life-cycle perspective, focusing on evaluation criteria and indicators in the (historic) built environment.


Sign in / Sign up

Export Citation Format

Share Document