scholarly journals Impact of Agricultural Drought on Sunflower Production across Hungary

Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1339
Author(s):  
Endre Harsányi ◽  
Bashar Bashir ◽  
Firas Alsilibe ◽  
Karam Alsafadi ◽  
Abdullah Alsalman ◽  
...  

In the last few decades, agricultural drought (Ag.D) has seriously affected crop production and food security worldwide. In Hungary, little research has been carried out to assess the impacts of climate change, particularly regarding droughts and crop production, and especially on regional scales. Thus, the main aim of this study was to evaluate the impact of agricultural drought on sunflower production across Hungary. Drought data for the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) were collected from the CARBATCLIM database (1961–2010), whereas sunflower production was collected from the Hungarian national statistical center (KSH) on regional and national scales. To address the impact of Ag.D on sunflower production, the sequence of standardized yield residuals (SSYR) and yield losses YlossAD was applied. Additionally, sunflower resilience to Ag.D (SRAg.D) was assessed on a regional scale. The results showed that Ag.D is more severe in the western regions of Hungary, with a significantly positive trend. Interestingly, drought events were more frequent between 1990 and 2010. Moreover, the lowest SSYR values were reported as −3.20 in the Hajdu-Bihar region (2010). In this sense, during the sunflower growing cycle, the relationship between SSYR and Ag.D revealed that the highest correlations were recorded in the central and western regions of Hungary. However, 75% of the regions showed that the plantation of sunflower is not resilient to drought where SRAg.Dx < 1. To cope with climate change in Hungary, an urgent mitigation plan should be implemented.

2014 ◽  
Vol 17 (3) ◽  
pp. 5-11
Author(s):  
Khoi Nguyen Dao ◽  
Quang Nguyen Xuan Chau

The main objective of this study was to evaluate the impact of climate change on the meteorological drought in the Daklak province. In this study, the meteorological drought was calculated using the Standardized Precipitation Index (SPI).From this result, two scensrios fot the precipitation VA1B and B1 were downscaled, from the outputs of 4 GCMs (General Circulation Model): CGCM3.1 (T63), CM2.0, CM2.1, and HadCM3 using the simple downscaling method (delta change method). The impacts of climate change on the droughts were assessed by comparing the present (1980- 2009) and the future droughts (2010-2039, 2040-2069, and 2070-2099).Results of the study suggested that the future temperature would increase by 0.9-2.8ºC and the future precipitation would decrease by 0.4-4.7% for both A1B and B1 scenarios. Under the future climate scenarios, the frequency and severity of extreme drought would increase. The results obtained in this study could be useful for planning and managing water resources at this region.


2014 ◽  
Vol 11 (4) ◽  
pp. 5639-5667 ◽  
Author(s):  
L. Wang ◽  
B. Duan ◽  
Y. Zhang ◽  
F. Berninger

Abstract. This article focuses on the relationship between the net primary production (NPP) of Chinese fir and the climate. Spatial-temporal NPP pattern in the potential distribution area of Chinese fir from 2000 to 2010 was characterized utilizing the Moderate Resolution Imaging Spectroradiometer (MODIS) data in a Geographic Information Systems (GIS) environment. The results showed that the production of Chinese fir was higher in southern and eastern regions than in northern and western areas, which was consistent with the spatial pattern of temperature and precipitation. The relationship between NPP of Chinese fir and climate variables was analyzed comprehensively on three scales: regional scale, zonal gradients and pixel scale. On the regional scale, precipitation showed higher correlation coefficients with NPP than did temperature. When scaling to pixels, the spatial variability pattern indicated that temperature was more important in central and eastern regions, while precipitation was crucial in the northern part. Negative correlations between NPP and precipitation and temperature were found in the southern region. The zonal analysis revealed that the impact of precipitation on the production was more complicated than that of temperature. When compared to natural forests, plantations appear to be more sensitive to the mode of precipitation, which indicates their higher vulnerability under climate change which could potentially lead to increasing variability in rainfall. Temporally, NPP values decreased despite of increasing temperatures, and more in plantations than among other vegetation types, which draws attention to carbon sequestration potential by plantations under current climate change.


2019 ◽  
Vol 2 (4) ◽  
pp. 149
Author(s):  
Arzaky Ardi Surya Nugroho ◽  
Cahyoadi Bowo ◽  
Joko Sudibya

ABSTRACT Perennial tropical horticulture is a superior product whose productivity is affected by water availability. The impact of climate fluctuations due to global warming affects the availability of ground water. This study aims to determine the effect of the Standardized Precipitation Index (SPI) drought index derived from rainfall data on the productivity of perennial horticulture (durian, avocado and rambutan). The study was conducted from July 2016 - November 2018 in 9 sub-districts in Jember Regency where has the highest production. Rainfall data is proceed into SPI data according to the guidelines of the WMO (World Meteorological Organization). Productivity data derived from production data divided by the number of plants. The results of 12 monthly SPI calculations compared with the perennial horticultural productivity data. To find out the relationship between productivity and SPI, the correlation method is used. The results showed that the appropriate SPI value for observing annual horticultural productivity was SPI 9 and 12 monthly. The value of SPI greatly influences the correlation of productivity of durian, avocado and rambutan. Keywords: SPI, productivity, annual horticulture. ABSTRAK Tanaman hortikultura tropis tahunan adalah produk unggulan yang produktivitasnya dipengaruhi oleh ketersediaan air. Dampak fluktuasi iklim akibat pemanasan global mempengaruhi ketersediaan air tanah. Penelitian ini bertujuan untuk mengetahui pengaruh index kekeringan SPI yang berasal dari data curah hujan terhadap produktivitas hotikultura tahunan (durian, alpukat dan rambutan). Penelitian dilakukan mulai bulan Juli 2016 – November 2018 pada 9 Kecamatan dengan produksi tertinggi di Kabupaten Jember. Data curah hujan diolah menjadi data SPI sesuai pedoman WMO (World Meteorological Organization) dan data produktivitas berasal dari data produksi dibagi jumlah tanaman kemudian hasil perhitungan SPI 12 bulanan dibandingkan dengan data produktifitas hortikultura t ahunan. Untuk mengetahui hubungan produktivitas dan SPI digunkan metode korelasi. Hasil penelitian menunjukkan nilai SPI yang sesuai untuk mengamati produktivitas hortikultura tahunan adalah SPI 9 dan 12 bulanan. Nilai SPI sangat berpengaruh terhadap korelasi produktivitas durian, alpukat dan rambutan. Nilai SPI yang semakin tinggi menaikkan produktivitas durian, tetapi menurunkan produktivitas alpukat dan rambutan. Kata Kunci : SPI, produktifitas, hortikuktura tahunan


2021 ◽  
Vol 325 ◽  
pp. 01017
Author(s):  
Qooi Insanu Putra ◽  
Emilya Nurjani

Gunungkidul Regency is known as an area that often experiences drought. On the other hand, Gunungkidul Regency is also the regency with the highest amount of rice production in the Special Region of Yogyakarta Province. Rainfed paddy farming is the most widely developed type of paddy in Gunungkidul Regency where irrigation needs are determined by rainfall. Decreased rainfall that triggers meteorological drought can disrupt rainfed-based agriculture. This study aims to analyze the distribution of meteorological drought and analyze the impact of meteorological drought on rainfed paddy productivity in Gunungkidul Regency during the period 2001 – 2019. Meteorological drought identification was carried out using the Standardized Precipitation Index (SPI). Results of the SPI classification was mapped using Spline-Tension interpolation for spatial analysis of the distribution of meteorological drought. Spatial analysis and comparison graphs were used to analyze the relationship between drought and rainfed paddy productivity. The widest meteorological drought in Gunungkidul Regency occurred in November 2006. The highest frequency of drought events occurred in Paliyan Sub-district for 50 months while the lowest occurred in Ponjong Sub-district for 30 months. Most sub-districts in Gunungkidul Regency have a positive relationship between meteorological drought. Most of rainfed paddy productivity decreased when El Nino occurred.


2021 ◽  
Vol 9 (4) ◽  
pp. 146
Author(s):  
Masita Ratih ◽  
Gusfan Halik ◽  
Retno Utami Agung Wiyono

Drought disasters that occur in the Sampean watershed from time to time have increased, both the intensity of events and the area affected by drought. The general objective of this research is to develop an assessment method for the impact of climate chan ge on vulnerability to drought disasters based on atmospheric circulation data. The specific objectives of this study are to model rainfall predictions based on atmospheric circulation data, predict rainfall in various climate change scenarios (Intergovernm ental Panel on Climate Change, IPCC – AR5), and assess vulnerability to drought disasters using a meteorological approach. The Standardized Precipitation Index (SPI) is one way to analyze the drought index in an area which was developed previous researcher. The Standardized Precipitation Index (SPI) is designed to quantitatively determine the rainfall deficit with various time scales. The advantage of the Standardized Precipitation Index (SPI) is that it is enough to use monthly rainfall data to compare drou ght levels between regions even with different climate types. To facilitate the presentation of the data base on the identification of d rought susceptibility, we need a system that can assist in building, storing, managing and displaying geographically ref erenced information in the form of spatial mapping. This research facilitates monitoring of the area of drought-prone areas, predicts drought levels, prevents future drought disasters, and prepares plans for rebuilding drought-prone areas in the Sampean watershed.


2019 ◽  
Vol 19 (3) ◽  
pp. 125-135 ◽  
Author(s):  
Khadija Diani ◽  
Ilias Kacimi ◽  
Mahmoud Zemzami ◽  
Hassan Tabyaoui ◽  
Ali Torabi Haghighi

Abstract One of the adverse impacts of climate change is drought, and the complex nature of droughts makes them one of the most important climate hazards. Drought indices are generally used as a tool for monitoring changes in meteorological, hydrological, agricultural and economic conditions. In this study, we focused on meteorological drought events in the High Ziz river Basin, central High Atlas, Morocco. The application of drought index analysis is useful for drought assessment and to consider methods of adaptation and mitigation to deal with climate change. In order to analyze drought in the study area, we used two different approaches for addressing the change in climate and particularly in precipitation, i) to assess the climate variability and change over the year, and ii) to assess the change within the year timescale (monthly, seasonally and annually) from 1971 to 2017. In first approach, precipitation data were used in a long time scale e.g. annual and more than one-year period. For this purpose, the Standardized Precipitation Index (SPI) was considered to quantify the rainfall deficit for multiple timescales. For the second approach, trend analysis (using the Mann-Kendall (M-K) test) was applied to precipitation in different time scales within the year. The results showed that the study area has no significant trend in annual rainfall, but in terms of seasonal rainfall, the magnitude of rainfall during summer revealed a positive significant trend in three stations. A significant negative and positive trend in monthly rainfall was observed only in April and August, respectively.


2020 ◽  
Vol 20 (8) ◽  
pp. 3266-3280
Author(s):  
Jeongeun Won ◽  
Sangdan Kim

Abstract Prediction of drought is important for efficient water management, as the occurrence of droughts affects large areas over a long period. According to various climate change scenarios, it is reported that in the future, Korea's climate is likely to increase in temperature with increasing rainfall. This increase in temperature will have a big impact on evapotranspiration. The occurrence of drought begins mainly with two causes: lack of rainfall or an increase in evapotranspiration. Therefore, in this study, the impact of climate change on future droughts is revealed through the Standardized Precipitation Index (SPI) and the Evaporative Demand Drought Index (EDDI). These two drought indices with different characteristics are used to examine the trend of future drought, and a drought Severity-Duration-Frequency (SDF) curve was derived to quantitatively analyze the depth of future drought. Future droughts are projected by applying future climate data generated from various climate models.


Author(s):  
J. Macholdt ◽  
J. Glerup Gyldengren ◽  
E. Diamantopoulos ◽  
M. E. Styczen

Abstract One of the major challenges in agriculture is how climate change influences crop production, for different environmental (soil type, topography, groundwater depth, etc.) and agronomic management conditions. Through systems modelling, this study aims to quantify the impact of future climate on yield risk of winter wheat for two common soil types of Eastern Denmark. The agro-ecosystem model DAISY was used to simulate arable, conventional cropping systems (CSs) and the study focused on the three main management factors: cropping sequence, usage of catch crops and cereal straw management. For the case region of Eastern Denmark, the future yield risk of wheat does not necessarily increase under climate change mainly due to lower water stress in the projections; rather, it depends on appropriate management and each CS design. Major management factors affecting the yield risk of wheat were N supply and the amount of organic material added during rotations. If a CS is characterized by straw removal and no catch crop within the rotation, an increased wheat yield risk must be expected in the future. In contrast, more favourable CSs, including catch crops and straw incorporation, maintain their capacity and result in a decreasing yield risk over time. Higher soil organic matter content, higher net nitrogen mineralization rate and higher soil organic nitrogen content were the main underlying causes for these positive effects. Furthermore, the simulation results showed better N recycling and reduced nitrate leaching for the more favourable CSs, which provide benefits for environment-friendly and sustainable crop production.


Author(s):  
Indah Listiana ◽  
Indah Nurmayasari ◽  
Rinaldi Bursan ◽  
Muher Sukmayanto ◽  
Helvi Yanfika ◽  
...  

Climate change is an extreme natural change condition due to global warming that cannot be avoided, and will have a broad impact on various aspects of life, including the agricultural sector. The impact of climate change that occurs in the agricultural sector, namely flood and drought that cause plants to crop failure , is becoming greater, causing significant reduction in agricultural production, especially rice, requiring that farmers have the ability to adapt to climate change. The purposes of this study are to analyze the relationship between the performance level of agricultural extension workers and the capacity level of farmers in regard to climate change adaptation, and to analyze the relationship between the level of farmer capacity in climate change adaptation and rice productivity. The research was conducted in Central Lampung Regency in 2019 using a total of 100 rice farmers. The data analysis method used is Spearman rank correlation analysis. The results show that the performance level of agricultural instructors is significantly related to the level of knowledge capacity, attitude, and skills of farmers in climate change adaptation. Knowledge capacity, attitude, and skills of farmers in climate change adaptation are significantly related to rice productivity.


2018 ◽  
Vol 31 ◽  
pp. 131-160 ◽  
Author(s):  
Michel Reddé

In a series of studies about settlement density in the Rhine area from protohistoric to modern times, K.-P. Wendt and A. Zimmermann try their hand at the difficult task of evaluating the palaeodemography of a region. Their task is all the more complex because these are times and spaces for which written sources are lacking, as a result of which reasoning relies very broadly on interpretation of the archaeological record. The two researchers also attempt to characterize the density of rural settlements and their spatial distribution. I shall not dally on the methods employed, which involve quite complex statistics and geomatics (anyway, they lie outside my area of scientific competence), and shall take the figures at face value, even if I might question some of them. I shall contemplate the economic impact of population growth on the countryside of Gaul in Imperial times. It is a subject that has often been addressed, but one which I intend to reconsider in the context of a European programme on this issue. The relationship between population numbers, agricultural yield, gross domestic product and taxation has certainly been one key to our understanding of the Roman economy ever since the model suggested by K. Hopkins. Here, however, I do not wish to proceed in terms of theory, but intend to review critically the archaeological sources, which, for want of written evidence, are our mainspring for evaluating the key components of economic development on the regional scale of NE Gaul.


Sign in / Sign up

Export Citation Format

Share Document