scholarly journals A Tangled Threesome: Circadian Rhythm, Body Temperature Variations, and the Immune System

Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 65
Author(s):  
Benjamin Coiffard ◽  
Aïssatou Bailo Diallo ◽  
Soraya Mezouar ◽  
Marc Leone ◽  
Jean-Louis Mege

The circadian rhythm of the body temperature (CRBT) is a marker of the central biological clock that results from multiple complex biological processes. In mammals, including humans, the body temperature displays a strict circadian rhythm and has to be maintained within a narrow range to allow optimal physiological functions. There is nowadays growing evidence on the role of the temperature circadian rhythm on the expression of the molecular clock. The CRBT likely participates in the phase coordination of circadian timekeepers in peripheral tissues, thus guaranteeing the proper functioning of the immune system. The disruption of the CRBT, such as fever, has been repeatedly described in diseases and likely reflects a physiological process to activate the molecular clock and trigger the immune response. On the other hand, temperature circadian disruption has also been described as associated with disease severity and thus may mirror or contribute to immune dysfunction. The present review aims to characterize the potential implication of the temperature circadian rhythm on the immune response, from molecular pathways to diseases. The origin of CRBT and physiological changes in body temperature will be mentioned. We further review the immune biological effects of temperature rhythmicity in hosts, vectors, and pathogens. Finally, we discuss the relationship between circadian disruption of the body temperature and diseases and highlight the emerging evidence that CRBT monitoring would be an easy tool to predict outcomes and guide future studies in chronotherapy.

1991 ◽  
Vol 260 (1) ◽  
pp. R126-R133 ◽  
Author(s):  
L. Johannsen ◽  
J. Wecke ◽  
F. Obal ◽  
J. M. Krueger

Muramyl peptides have a variety of biological effects in mammals, including enhancement of the immune response, sleep, and body temperature. Although mammals lack biosynthetic pathways for muramyl peptides, they are found in mammals and are well known as components of bacterial cell walls. This suggests that phagocytic mammalian cells digest bacterial cell walls and produce biologically active muramyl peptides. Staphylococcal cell walls were radioactively labeled during growth of the bacteria. During the digestion of these radiolabeled bacteria, murine bone marrow macrophages produced low-molecular-weight substances that coeluted chromatographically with the radioactive cell wall marker. Further separation of these substances using reversed-phase high-performance liquid chromatography resulted in the isolation of substances with high specific biological activity. Intracerebroventricular injection of rabbits with these substances induced an increase in slow-wave sleep and body temperature and a suppression of rapid-eye-movement sleep. The characteristics of the biological responses and the chromatographic behavior of the active components are consistent with those of muramyl peptides. The ability of macrophages to tailor muramyl peptides from peptidoglycan may provide an amplification step for the immune response. Muramyl peptides released by macrophages may also act as mediators for various facets of the acute phase response elicited by bacterial infections such as fever and sleep.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhengguo Wu ◽  
Shang Li ◽  
Xiao Zhu

Cancer immunotherapy is a kind of therapy that can control and eliminate tumors by restarting and maintaining the tumor-immune cycle and restoring the body’s normal anti-tumor immune response. Although immunotherapy has great potential, it is currently only applicable to patients with certain types of tumors, such as melanoma, lung cancer, and cancer with high mutation load and microsatellite instability, and even in these types of tumors, immunotherapy is not effective for all patients. In order to enhance the effectiveness of tumor immunotherapy, this article reviews the research progress of tumor microenvironment immunotherapy, and studies the mechanism of stimulating and mobilizing immune system to enhance anti-tumor immunity. In this review, we focused on immunotherapy against tumor microenvironment (TME) and discussed the important research progress. TME is the environment for the survival and development of tumor cells, which is composed of cell components and non-cell components; immunotherapy for TME by stimulating or mobilizing the immune system of the body, enhancing the anti-tumor immunity. The checkpoint inhibitors can effectively block the inhibitory immunoregulation, indirectly strengthen the anti-tumor immune response and improve the effect of immunotherapy. We also found the checkpoint inhibitors have brought great changes to the treatment model of advanced tumors, but the clinical treatment results show great individual differences. Based on the close attention to the future development trend of immunotherapy, this study summarized the latest progress of immunotherapy and pointed out a new direction. To study the mechanism of stimulating and mobilizing the immune system to enhance anti-tumor immunity can provide new opportunities for cancer treatment, expand the clinical application scope and effective population of cancer immunotherapy, and improve the survival rate of cancer patients.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
N I Bektas ◽  
G Akcay ◽  
N Derin ◽  
D Adiguzel ◽  
C Celik-Ozenci

Abstract Study question Are molecular clock genes (MCGs) expressed rhythmically in mouse placenta, and whether maternal circadian rhythm disruption (MCRD) is associated with intrauterine growth retardation (IUGR) through disturbing rhythmic expression of MCGs? Summary answer Maternal circadian disruption causes impaired rhythmic expression of MCGs (Bmal1, Clock, Npas2, Per1, Per2, Per3, Cry1, and Cry2) and IUGR during placenta development in mice. What is known already The world economy is based on a 24/7 society and shift work or jet travel across time zones disrupts circadian rhythm in pregnant women. Evidence indicates that gestational chrono-disruption results in IUGR. Mature mouse and human placenta express MCGs. There is no information in the literature on whether the MCG expression in the placenta is rhythmic or not and whether the rhythmic expression of MCGs is impaired due to MCRD during pregnancy. Also, it is not known whether the association with MCRD and IUGR is related to MCGs. Study design, size, duration Young adult female BALB/c mice were paired with males until vaginal plug formation was verified. Females were randomly assigned to two groups: control and phase-advance. Controls remained on a constant 12-hr light:12-hr dark cycle, whereas phase-advanced mice were subjected to 6-hr advances in the LD cycle every 5 days. Placentae (n = 1329) and fetuses were obtained from 144 mice at Zeitgeber time (ZT)0, ZT6, ZT12, and ZT18 days 12, 14, and 16 of pregnancy. Participants/materials, setting, methods The following analysis was performed: (i) open field test was used for locomotor activity evaluations to confirm MCRD, (ii) placenta/fetus weight ratio for evaluation of IUGR development, (iii) morphometric evaluation of placental compartments utilizing H&E staining (iv) gene expression analysis of MCGs utilizing qRT-PCR. One-way and Two-way ANOVA test followed by Holm-Sidak posthoc test was used for multiple comparisons. Values are expressed as mean ± standard error, and values below p < 0.05 were considered statistically significant. Main results and the role of chance Expression of MCGs (Bmal1, Clock, Npas2, Per1, Per2, Per3, Cry1, and Cry2) was rhythmic in the early and mature placenta development stages (days 12, 14, 16). Locomotor activity tests reveal that the total distance covered on the 16th day of pregnancy significantly decreased compared to the control group (p = 0.000158). The ratio of the time spent in the outer/inner quadrant, an anxiety indicator, significantly increased in the MCRD group on the 14th (p = 0.0351) and 16th days of pregnancy (p = 0.000329). While the number of fetuses was similar in both groups for all gestational days (p = 0.896), in the MCRD group, the fetus/placenta weight ratio decreased significantly on the 12th and 16th days of pregnancy (p < 0.001). Thus, IUGR developed due to MCRD. Histomorphometry analysis of the placental compartments revealed a significant reduction in the spongiotrophoblast layer’s size on all days of pregnancy and the labyrinth layer on day 16 (p < 0.05). Finally, the rhythmic expression MCGs were impaired in placentas obtained from MCRD groups on days 12th, 14th, 6th of pregnancy (p < 0.001). In conclusion, we found a robust relationship with the disturbed MCGs expression and occurrence of IUGR during a chrono-disrupted gestation. Limitations, reasons for caution Since this study was conducted in mice, care should be taken when translating the results to humans. Wider implications of the findings: Our results in mice are important for initiating basic science knowledge regarding the outcomes of maternal chrono-disruption. Moreover, research in the placenta of gestational chrono-disrupted mothers, such as shift-workers, are urgently needed to translate our findings into the clinic. Trial registration number TUBITAK–119S121 and Akdeniz University Research Projects Unit TYL–2018–3960


1981 ◽  
Vol 55 (2) ◽  
pp. 95-100 ◽  
Author(s):  
F. Hawking ◽  
Tinousi Jennings ◽  
F. J. Louis ◽  
E. Tuira

ABSTRACT1. Investigations were made of the effect of various procedures in raising or lowering the microfilaria count of Pacific type Wuchereria bancrofti in the peripheral blood.2. Raising the body temperature in the early morning was followed by a moderate fall in the counts. Breathing increased oxygen, or reduced oxygen (hypoxia) or increased carbon dioxide, or the ingestion of sodium bicarbonate produced no consistent and significant changes in the count. Ingestion of glucose (in one volunteer) was followed by a small rise in the count. Muscular exercise was followed by a fall in the count, which is interpreted as probably being a response to a lower concentration of oxygen in the venous blood returning to the lung.3. It has not been possible to identify the physiological components of the circadian rhythm of the human body which entrain the cycle of these microfilariae. Attempts to obtain evidence incriminating the stimuli described above have been unsuccessful.


2017 ◽  
Vol 24 (3) ◽  
pp. 155-161 ◽  
Author(s):  
Osman Karagul ◽  
Gulbin Rudarli Nalcakan ◽  
Yeliz Dogru ◽  
Murat Tas

AbstractIntroduction. The aim of the study was to examine the effect of circadian rhythm on dynamic balance performance and to determine the role of physical activity level, body temperature, chronotype, and gender in this possible effect. Material andmethods. Forty-two young male and female subjects with different physical activity levels participated in the study. A dynamic equilibrium test, a Star Excursion Balance Test (SEBT), was conducted at 9:00, 13:00, and 17:00 on three different days with at least two days of interval between tests. The test scores were calculated by dividing the reaching distances by the leg length and multiplying the quotient by 100. The physical activity level and sleep state were evaluated using questionnaires. Before each test, body temperatures were measured orally. Results. The best SEBT scores were found at 13:00 and 17:00 in the male group and in the trained group. The body temperature changes increased parallel to SEBT scores. The scores for the non-dominant leg were found to be significantly different in posterior test directions, and those for the dominant leg were different in anterior directions. Chronotype did not affect the test results. Conclusions. Circadian rhythm was found to have an effect on dynamic balance performance. Body temperature, gender, and physical activity level were also found to play a role in this effect.


Author(s):  
Oleg Vesnovsky ◽  
L. D. Timmie Topoleski ◽  
Laurence W. Grossman ◽  
Jon P. Casamento ◽  
Liang Zhu

Body temperature monitoring of humans has been an important tool for helping clinicians diagnose infections, detect fever, monitor thermoregulation functions during surgical procedures, and assess post-surgery recovery.1–3 Fever itself is typically not considered a disease. It is a response of the body to a disease, which is often inflammatory in nature. Elevation of the set point at the body temperature control center, the brain hypothalamus, is caused by circulating pyrogens produced by the immune system responding to diseases. Since the brain hypothalamus is not easily accessed by thermometers, other body locations have been identified as alternative measuring sites. Those sites include the pulmonary artery, rectum, bladder, distal esophagus and nasopharynx, sublingual surface of the tongue, under the armpit, tympanic membrane, and forehead.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S631-S631
Author(s):  
Ivayla I Geneva ◽  
Waleed Javaid

Abstract Background The circadian rhythm is believed to offer survival advantage with dysregulation being linked to immune response deficiencies and metabolic derangements. Diurnal temperature variation exists in humans, yet its preservation during illness is not well understood. Herein we present an analysis of diurnal body temperatures among hospitalized patients, with a focus on infectious versus non-infectious diagnoses. Methods Temperatures measured within 1/2 hour of 8am, 12pm, 4pm, 8pm, 12 am, and 4am from 16,245 hospitalized patients were analyzed using descriptive statistics and t-tests. Results Although we found a diurnal pattern when analyzing the ensemble of temperatures from all patients (Figure 1), stratified by measurement site (oral, axillary, temporal, and tympanic), the through-to-peak difference was only 0.2F (0.1C), while previously reported diurnal difference in healthy volunteers was 1.9 °F (1.06 °C). Data from the core body temperature sites monotherm and rectal did not show any diurnal pattern. The peaks in body temperature occurred at 8 pm for all patients, regardless of age, which is similar to healthy people. However, the minimum body temperature was shifted to later times compared with healthy people (6am or 2 hours before rising in health) – for young patients (age 20-30 years, N=1285) the through was at 8am and for elderly patients (age 70-80 years, N=1736), it was at 12pm (Figure 2). Analysis of body temperature of individual patients showed that less than 20% of patients exhibited diurnal variation and among those showing variation, the trend was present only on the minority of hospitalization days (Table 1). Interestingly, the presence or absence of an infectious process did not influence the proportion of patients showing diurnal variation. Figure 1 Figure 2 Table 1 Conclusion Hospitalization is associated with disruption in the circadian rhythm as reflected by patients’ body temperature, with shifting of the diurnal variation curve and blunting of the temperature range both in the ensemble and on the individual level. The trend is not influenced by having an infection. However, since core body temperatures tend to be the measurement site of choice in the ICU setting, we suspect that further obliteration of the diurnal rhythm occurs with more severe disease. Disclosures All Authors: No reported disclosures


2019 ◽  
Vol 20 (15) ◽  
pp. 1236-1243 ◽  
Author(s):  
Hernández-Ramos Reyna-Margarita ◽  
Castillo-Maldonado Irais ◽  
Rivera-Guillén Mario-Alberto ◽  
Ramírez-Moreno Agustina ◽  
Serrano-Gallardo Luis-Benjamín ◽  
...  

Background: The immune system is responsible for providing protection to the body against foreign substances. The immune system divides into two types of immune responses to study its mechanisms of protection: 1) Innate and 2) Adaptive. The innate immune response represents the first protective barrier of the organism that also works as a regulator of the adaptive immune response, if evaded the mechanisms of the innate immune response by the foreign substance the adaptive immune response takes action with the consequent antigen neutralization or elimination. The adaptive immune response objective is developing a specific humoral response that consists in the production of soluble proteins known as antibodies capable of specifically recognizing the foreign agent; such protective mechanism is induced artificially through an immunization or vaccination. Unfortunately, the immunogenicity of the antigens is an intrinsic characteristic of the same antigen dependent on several factors. Conclusion: Vaccine adjuvants are chemical substances of very varied structure that seek to improve the immunogenicity of antigens. The main four types of adjuvants under investigation are the following: 1) Oil emulsions with an antigen in solution, 2) Pattern recognition receptors activating molecules, 3) Inflammatory stimulatory molecules or activators of the inflammasome complex, and 4) Cytokines. However, this paper addresses the biological plausibility of two phytochemical compounds as vaccine adjuvants: 5) Lectins, and 6) Plant phenolics whose characteristics, mechanisms of action and disadvantages are addressed. Finally, the immunological usefulness of these molecules is discussed through immunological data to estimate effects of plant phenolics and lectins as vaccine adjuvants, and current studies that have implanted these molecules as vaccine adjuvants, demonstrating the results of this immunization.


2015 ◽  
Vol 6 (2) ◽  
pp. 96-108
Author(s):  
Elena Aleksandrovna Dementeva ◽  
Olga Petrovna Gurina

The key immunology problem remains the understanding of the mechanisms for the effective protection of the body against various pathogens with simultaneous suppression of the immune response to autoantigens. The pathogenesis of neoplastic pathological processes includes violations of the mechanisms of normal cell growth and cell proliferation. Antitumor immune response is a complex event, involving many different cell types. But despite the ability of the immune system to recognize and respond to a variety of tumor-associated antigens, the neoplastic process overcomes the protective forces of the organism, grows and spreads. For cancer cells characterized by independence from antiproliferative signals, autocrine stimulation of growth disturbances in the system, induction of apoptosis and control of genome stability. As a result of accumulation of genetic and epigenetic changes in tumor cells differ significantly from the normal range and the level of expression of genes involved in the transformation process, the accumulation of mutations in key genes promoters and suppressors of tumorigenesis. This creates the opportunity for recognition by cells of the immune system. The study of changes in value and operation of the various elements of the immune system in the development of experimental neoplastic process allows you to identify the mechanisms of interaction in the system «malignant tumor-immune system, to assess patterns of interaction with other organs and tissues, to create a theoretical pathogenetically reasonable premise for the development of anticancer therapy.


Sign in / Sign up

Export Citation Format

Share Document