scholarly journals Effect of Foliar Fertigation of Chitosan Nanoparticles on Cadmium Accumulation and Toxicity in Solanum lycopersicum

Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 666
Author(s):  
Mohammad Faizan ◽  
Vishnu D. Rajput ◽  
Abdulaziz Abdullah Al-Khuraif ◽  
Mohammed Arshad ◽  
Tatiana Minkina ◽  
...  

Cadmium (Cd) stress is increasing at a high pace and is polluting the agricultural land. As a result, it affects animals and the human population via entering into the food chain. The aim of this work is to evaluate the possibility of amelioration of Cd stress through chitosan nanoparticles (CTS-NPs). After 15 days of sowing (DAS), Solanum lycopersicum seedlings were transplanted into maintained pots (20 in number). Cadmium (0.8 mM) was providing in the soil as CdCl2.2.5H2O at the time of transplanting; however, CTS-NPs (100 µg/mL) were given through foliar spray at 25 DAS. Data procured from the present experiment suggests that Cd toxicity considerably reduces the plant morphology, chlorophyll fluorescence, in addition to photosynthetic efficiency, antioxidant enzyme activity and protein content. However, foliar application of CTS-NPs was effective in increasing the shoot dry weight (38%), net photosynthetic rate (45%) and SPAD index (40%), while a decrease in malondialdehyde (24%) and hydrogen peroxide (20%) was observed at the 30 DAS stage as compared to control plants. On behalf of the current results, it is demonstrated that foliar treatment of CTS-NPs might be an efficient approach to ameliorate the toxic effects of Cd.

1990 ◽  
Vol 8 (3) ◽  
pp. 151-153
Author(s):  
Stuart L. Warren

Abstract Uniconazole, an experimental plant growth regulator, was applied as a foliar spray and a medium drench to 13 and 7 species, resp. Shoot dry weight was determined at 60, 90, and 120 days after treatment. Sixty days after treatment, shoot dry weight of no species was affected by uniconazole. At 90 and 120 days, shoot dry weight of all species, except golden privet (Ligustrum × vicaryi), Russian-olive (Elaeagnus angustifolia), and waxleaf privet (Ligustrum lucidum), decreased with increasing rates of uniconazole, regardless of method of application. Degree of growth reduction varied by species, rate, and method of application. For most species, uniconazole was effective in suppressing growth for 120 days. Generally greater reduction of shoot growth resulted from drench application compared to foliar application.


2007 ◽  
Vol 87 (3) ◽  
pp. 581-585 ◽  
Author(s):  
Ahmet Korkmaz ◽  
Murat Uzunlu ◽  
Ali Riza Demirkiran

Salicylic acid (SA) is a common plant-produced signal molecule that is responsible for inducing tolerance to a number of biotic and abiotic stresses. An experiment was, therefore, conducted to test whether acetyl salicylic acid (ASA) application at various concentrations through seed immersion or foliar spray would protect muskmelon [Cucumis melo L. (Reticulatus Group)] seedlings subjected to chilling stress. Twenty-one-day-old plants pre-treated with ASA (0, 0.1, 0.25, 0.50 or 1.0 mM) were subjected to chilling stress for 72 h at 3 ± 0.5°C. ASA, applied either through seed immersion or foliar spray, was effective within the range of 0.1 to 1 mM in inducing tolerance to chilling stress in muskmelon seedlings; however, there was no significant difference between application methods. ASA significantly and curvilinearly affected all seedling growth and stress indicator variables tested except shoot dry weight. The best protection was obtained from seedlings pre-treated with 0.5 mM ASA. The highest ASA concentration used was slightly less effective in providing chilling stress protection. Even though both methods provided similar means of protection, due to its simplicity and practicality, immersion of muskmelon seeds prior to sowing in 0.5 mM ASA would be a more desirable method to induce tolerance to chilling stress. Key words: Cucumis melo, aspirin, chilling stress tolerance, gas exchange, electrolyte leakage


Author(s):  
Y. Rajasekhara Reddy ◽  
G. Ramanandam ◽  
P. Subbaramamma ◽  
A. V. D. Dorajeerao

A field experiment was carried out during rabi season of 2018-2019, at college farm, College of Horticulture, Dr. Y.S.R. Horticultural University, Venkataramannagudem, West Godavari District, Andhra Pradesh. The experiment was laidout in a Randomised Block Design with eleven treatments (viz., T1- NAA @ 50 ppm, T2-NAA @ 100 ppm, T3-GA3 @ 50 ppm,  T4-GA3 @ 100 ppm, T5-Thiourea @ 250 ppm, T6-Thiourea @ 500 ppm, T7-28-Homobrassinolide @ 0.1 ppm, T8-28-Homobrassinolide @ 0.2 ppm, T9-Triacontinol @ 2.5 ppm, T10-Triacontinol @ 5 ppm, T11-(Control) Water spray) and three replications. The treatments were imposed at 30 and 45 DAT in the form of foliar spray. Foliar application of GA3@ 100 ppm (T4) had recorded the maximum plant height (108.20 cm), leaf area (9.53 cm2) and leaf area index (0.74). Foliar application of thiourea @ 250 ppm (T5) had recorded the maximum values with respect to number of primary branches (15.03 plant-1), number of secondary branches (83.40 plant-1), plant spread (1793 cm2 plant-1), fresh weight (376.29 g plant-1), dry weight (103.54 g plant-1) and number of leaves plant-1((298.8). The same treatment (T5) had recorded the highest values with respect to crop growth rate (1.44 gm-2d-1), chlorophyll-a (1.40 mg g-1), chlorophyll-b (0.076 mg g-1) and total chlorophyll contents (1.48 mg g-1) in the leaves.


2013 ◽  
Vol 58 (1) ◽  
pp. 31-39
Author(s):  
Mohammad Mobin

Cadmium (Cd) accumulation, oxidative damage, and nitrogen metabolism were studied in roots and leaves of 30-d-old blackgram plants [Vigna mungo (L.) Hepper], grown in a mixture of soil and compost (3:1) with different Cd concentrations. Significant reductions in both root and shoot dry weight were noted. The concentration of Cd in roots and leaves increased with increasing Cd levels. The level of lipid peroxidation elevated with a consequent increase in H2O2 content under Cd stress in both plant organs. The activity of enzymes mediating the nitrogen assimilation in roots and leaves was greatly reduced in the presence of Cd, except glutamate dehydrogenase (GDH) which showed a significant increase.


1990 ◽  
Vol 70 (3) ◽  
pp. 925-930 ◽  
Author(s):  
PETER R. HICKLENTON

This study investigated the effects of growth retardants uniconazole [(E) - (p-chlorohenyl) -4, 4-dimethyl-2-(1,2,4-triazol-1-yl)-1-penten-3-ol] and daminozide (butanedioic acid mono 2,2-dimethylhydrazide) on three chrysanthemum (Dendranthema grandiflora Tzvelev.) cultivars. Uniconazole applied as a soil drench (0.02 mg a.i. pot−1) or foliar spray (0.014 mg a.i. pot−1) 10 d after removal of the shoot tip reduced plant height at harvest in cultivars Deep Luv, Tip and Tara. Higher doses of uniconazole resulted in further plant height reduction in Tip and Tara but not in Deep Luv. Daminozide spray (14 mg a.i. pot) and uniconazole spray (0.028 or 0.056 mg a.i. pot−1) produced plants of similar height. Pre-plant dips of both growth retardants were less effective than sprays or drenches in controlling height. Flower area and flower dry weight were reduced with uniconazole drench and spray, and daminozide spray in each cultivar. Shoot dry weight was similarly affected in Tip and Tara but not in Deep Luv. Flowering was delayed in each cultivar by post-plant treatments of uniconazole drench and spray and by daminozide spray (0.08, 0.014 and 14 mg a.i. pot−1, respectively), and by daminozide and uniconazole pre-plant dips (5.0 mg L−1 and 4000 mg L−1, respectively).Key words: Sumagic, XE-1019, B-Nine, Alar, Chrysanthemum × morifolium, Dendanthema grandiflora


Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 310 ◽  
Author(s):  
Shakir Ullah ◽  
Jafar Khan ◽  
Khizar Hayat ◽  
Ahmed Abdelfattah Elateeq ◽  
Uzma Salam ◽  
...  

Trace metals (TM) contamination is a severe problem in the environment and produced an adverse effect on the productivity of crops. Cadmium (Cd) is a TM ranked seven among the top 20 pollutants due to its high toxicity and solubility in water, taken up by the plants and affects their growth and metabolism. In this study, we evaluated the growth, Cd accumulation and tolerance capacities of three chickpea (Cicer arietinum L.) cultivars (NC234 (NC2), ICCV89310 (IC8) and ICCV89323-B (IC8-B)), subjected to two Cd concentrations (25 and 50 µM) in hydroponic culture. The toxicity of Cd reduced the plant height and fresh and dry biomass in all cultivars. The maximum reduction was observed at 50 µM of Cd. Compared with IC8-B, cultivars IC8 and NC2 exhibited better performance with high growth, biomass, root to shoot (R/S) ratio and water content under high Cd stress. To measure the accumulation of Cd in root and shoot, an inductively coupled plasma optical emission spectrometer (ICP-OES) was used. IC8 and NC2 had comparatively high Cd tolerance and accumulation ability (> 100 µg g−1 dry weight), with IC8 being more tolerant and accumulated higher Cd in shoot than NC2, while cultivar IC8-B was sensitive. Root accumulated more Cd than shoot in a dose-dependent manner. The bioconcentration factors (BCF) and bioaccumulation coefficients (BAC) were far higher than one (> 1) and increased with an increase in Cd concentrations, while the translocation factor (TF) was less than one (< 1), suggesting that all the three cultivars were unable to transfer Cd from the root to the shoot efficiently. Our results indicated that IC8 and NC2 proved to be resistant, while IC8-B showed sensitivity when exposed to high Cd stress (50 µM).


2010 ◽  
Vol 2 (2) ◽  
pp. 98-102 ◽  
Author(s):  
Mohamed M. EL FOULY ◽  
Zeinab M. MOBARAK ◽  
Zeinab A. SALAMA

Salinity, either of soil or of irrigation water, causes disturbances in plant growth and nutrient balance. Previous work indicates that applying nutrients by foliar application increases tolerance to salinity. A pot experiment with three replicates was carried out in the green house of NRC, Cairo, Egypt, to study the effect of micronutrients foliar application on salt tolerance of faba bean. Two concentrations of a micronutrient compound (0.1% and 0.15%) were sprayed in two different treatments prior to or after the salinity treatments. Levels of NaCl (0.00-1000-2000-5000 ppm) were supplied to irrigation water. Results indicated that 2000 and 5000 ppm NaCl inhibited growth and nutrient uptake. Spraying micronutrients could restore the negative effect of salinity on dry weight and nutrients uptake, when sprayed either before or after the salinity treatments. It is suggested that micronutrient foliar sprays could be used to improve plant tolerance to salinity.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 521B-521 ◽  
Author(s):  
Fahed A. Al-mana ◽  
David J. Beattie

A study of applying growth retardants under overhead and subsurface irrigation systems was conducted on bermudagrass (Cynodon dactylon L. cv. Tifway) grown from rhizomes in 15-cm pots containing sand medium. Paclobutrazol (50%) at 2 mg/pot was used as foliar spray or charged-hydrophilic polymers (Super Sorb C) and either incorporated or put below medium surface. Mefluidide (28%) at 0.01% ml/pot was used only as foliar spray. Before spray treatments, grasses were cut at 2 cm from medium surface, and the second cut was made at the 6th week from treatment. All growth retardant treatments reduced grass height compared to non-treated plants. The lowest grass height was produced by paclobutrazol as foliar spray under overhead irrigation in the 6th and 9th week. By the 9th week, all hormonal treatments under the two irrigation systems had no effect on grass quality, color, and establishment rate. Both paclobutrazol foliar spray and below medium surface charged-polymer treatments under subsurface irrigation had the lowest water loss and dry weight by the 6th and 9th week. The paclobutrazol charged-polymer treatment under subsurface irrigation had also the the lowest root dry weight among all treatments. Although mefluidide foliar spray was less effective on grass height than paclobutrazol, they had similar effect on water loss and shoot dry weight.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2440
Author(s):  
Qamar uz Zaman ◽  
Muhammad Rashid ◽  
Rab Nawaz ◽  
Afzal Hussain ◽  
Kamran Ashraf ◽  
...  

Soil contamination with toxic cadmium (Cd) is becoming a serious global problem and poses a key hazard to environments and the health of human beings worldwide. The present study investigated the effects of foliar applications of three forms of silicate chemicals (calcium silicate, sodium silicate, and potassium silicate) at four rates (0.25%, 0.5%, 0.75%, and 1.0%) at tillering stage on rice growth and the accumulation of Cd under Cd stress (30 mg kg−1). The results showed that Cd stress reduced the yield-related traits and enlarged Cd contents in different rice organs. The leaf gas exchange attributes and yield traits were enhanced, and the Cd accumulation and bioaccumulation factor in rice organs were reduced, especially in grains, through silicon application. In shoots, roots, and grains, foliar spray of Si reduced Cd contents by 40.3%, 50.7%, and 47.9%, respectively. The effectiveness of silicate compounds in reducing Cd toxicity varied with the kind of chemicals and doses of foliar applications. Foliar application of potassium silicate, at a rate of 0.5%, at tillering stage, showed the best effectiveness in improving grain yield, while mitigating Cd accumulation in rice grains. The outcome of this study provides a promising practicable approach in alleviating Cd toxicity in rice and preventing the entrance of Cd into the food chain.


1984 ◽  
Vol 14 (6) ◽  
pp. 850-854 ◽  
Author(s):  
S. B. Rood ◽  
G. Daicos ◽  
T. J. Blake

Weekly applications of 0.4 mg gibberellic acid (GA) in 8 μL 95% ethanol micropipetted onto shoots of rooted cuttings increased Populuseuramericana (Dode) Guinier height growth by 54% and shoot dry weight by 25% after 21 days. Total leaf area increased by 21% as a result of more rapid leaf production and slightly larger leaf sizes. Root growth was unaffected by GA treatment. The observed GA-induced acceleration resulted from an increase in relative growth rate while mean net assimilation rate was unaffected. Owing to a substantial increase in the number and size of leaves, the leaf area ratio, representing the ratio of photosynthesizing to respiring material, increased. While direct micropipette application of GA promoted height growth and primary shoot dry weight accumulation, GA application through either foliar spray or soil drench also promoted the growth of secondary shoots. Application of GA to shoots was more effective in promoting shoot growth than application through the roots. Direct GA application also promoted the growth of P. alba L. × P. grandidentata Michx. and P. × canescens (Ait.) Smith × P. alba × P. grandidentata. Thus, GA can be used for hastening early growth of these trees under winter greenhouse conditions.


Sign in / Sign up

Export Citation Format

Share Document