scholarly journals Morphological Features of the Anther Development in Tomato Plants with Non-Specific Male Sterility

Biology ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 32 ◽  
Author(s):  
Inna A. Chaban ◽  
Neonila V. Kononenko ◽  
Alexander A. Gulevich ◽  
Liliya R. Bogoutdinova ◽  
Marat R. Khaliluev ◽  
...  

The study was devoted to morphological and cytoembryological analysis of disorders in the anther and pollen development of transgenic tomato plants with a normal and abnormal phenotype, which is characterized by the impaired development of generative organs. Various abnormalities in the structural organization of anthers and microspores were revealed. Such abnormalities in microspores lead to the blocking of asymmetric cell division and, accordingly, the male gametophyte formation. Some of the non-degenerated microspores accumulate a large number of storage inclusions, forming sterile mononuclear pseudo-pollen, which is similar in size and appearance to fertile pollen grain (looks like pollen grain). It was discussed that the growth of tapetal cells in abnormal anthers by increasing the size and ploidy level of nuclei contributes to this process. It has been shown that in transgenic plants with a normal phenotype, individual disturbances are also observed in the development of both male and female gametophytes. The reason for the developmental arrest of some ovules was the death of endosperm at different stages of the globular embryo. At the same time, noticeable hypertrophy of endothelial cells performing a secretory function was observed. In the ovules of transgenic plants with abnormalities, the endothelium forms a pseudo-embryo instead of the embryo sac, stimulating the development of parthenocarpic fruits. The data obtained in this study can be useful for a better understanding of the genetic and molecular mechanisms of cytoplasmic male sterility and parthenocarpic fruit development in tomatoes.

2020 ◽  
Vol 18 (1) ◽  
pp. 147-156
Author(s):  
Bui Manh Minh ◽  
Ha Hong Hanh ◽  
Le Thi Thu Hien ◽  
Huynh Thi Thu Hue

Tomato (Solanum lycopersicum) is a nutritious fruit containing many secondary compounds with health benefits. The formation of tomato fruit through fertilization is controlled by auxin through Aux/IAA9 and ARF8 proteins. The mutated SlIAA9 gene leads to the parthenocarpic development of fruit or seedless tomato fruit. Nowadays, the CRISPR/Cas9 genome editing system is becoming increasingly popular in modifying desired genes on plant objects. In this study, gRNAs which target on tomato SlIAA9 gene were designed and inserted into CRISPR/Cas9 vectors. In addition, two strains of A. tumefaciens harboring pRGEB31-IAA9G2 and pRGEB32-IAA9G2 vectors carrying CRISPR/Cas9 expression system towards SlIAA9 gene in tomato were successfully created. The strain of A. tumefaciens harboring pRGEB31- IAA9G2 plasmid was used to develop transgenic tomato plants from Micro-Tom variety. PCR test showed that 5/14 plants had the presence of Cas9 gene in T0 plants. The transgenic plants have a normal morphology in comparation with the controls. The evaluation of mutant efficiency, type, and stability of mutations on the SlIAA9 will be conducted on next-generation plants when the mutations are stable and segregated into descendents.


2021 ◽  
Vol 72 (1) ◽  
Author(s):  
Said Hafidh ◽  
David Honys

The gametophyte represents the sexual phase in the alternation of generations in plants; the other, nonsexual phase is the sporophyte. Here, we review the evolutionary origins of the male gametophyte among land plants and, in particular, its ontogenesis in flowering plants. The highly reduced male gametophyte of angiosperm plants is a two- or three-celled pollen grain. Its task is the production of two male gametes and their transport to the female gametophyte, the embryo sac, where double fertilization takes place. We describe two phases of pollen ontogenesis—a developmental phase leading to the differentiation of the male germline and the formation of a mature pollen grain and a functional phase representing the pollen tube growth, beginning with the landing of the pollen grain on the stigma and ending with double fertilization. We highlight recent advances in the complex regulatory mechanisms involved, including posttranscriptional regulation and transcript storage, intracellular metabolic signaling, pollen cell wall structure and synthesis, protein secretion, and phased cell–cell communication within the reproductive tissues. Expected final online publication date for the Annual Review of Plant Biology, Volume 72 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
A.A. ANTONOV ◽  
◽  
E.N. BARANOVA ◽  
A.A. GULEVICH ◽  
L.V. KURENINA ◽  
...  

The change in the composition of soil microbiota as a result of the cultivation of various crops in agrocenoses is currently of great interest. The authors studied the effect of the root system of transgenic tomato plants (Solanum lycopersicum L.) grown in soil culture on the microbial community in the rhizosphere. The results showed that as a result of the cultivation of transgenic plants with the choline oxidase gene, the microbial community composition in the rhizosphere has changed significantly. A significant increase in the proportion (73%) and species diversity (Shannon index 2.25) of actinobacteria in the soil root zone of tomato transgenic codA plants as compared with control plants (10% and 0.95, respectively) has been revealed. The content of pseudomonads and micromycetes is significantly reduced (25 and 12% in transgenic plants; 70 and 81% in control plants, respectively). Thus, genetically modified plants are able to influence the microbial community structure in the rhizosphere.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ji-Seong Kim ◽  
Kentaro Ezura ◽  
Jeongeun Lee ◽  
Tohru Ariizumi ◽  
Hiroshi Ezura

AbstractParthenocarpy is the development of an ovary into a seedless fruit without pollination. The ubiquitous downregulation of SlIAA9 induces not only parthenocarpic fruit formation but also an abnormal vegetative phenotype. To make parthenocarpic transgenic tomato plants without unwanted phenotypes, we found two genes, namely, Solyc03g007780 and Solyc02g067760, expressed in ovary tissue but not in vegetative tissues. Solyc03g007780 was expressed in developing ovaries and anthers. Solyc02g067760 mRNA was detected in whole-flower tissues. The promoters of Solyc03g007780 (Psol80) and Solyc02g067760 (Psol60) predominantly induced the expression of genes in the ovule, placenta, endocarp and pollen and in whole-flower tissues, respectively. Psol80/60-SlIAA9i lines, created for SlIAA9-RNA interference controlled by two promoters, successfully formed parthenocarpic fruits without pleiotropic effects in vegetative tissues. Downregulation of SlIAA9, responsible for parthenocarpic fruit formation, was observed in ovules rather than ovaries in the Psol80/60-SlIAA9i lines. Although the weight of parthenocarpic fruits of the Psol80/60-SlIAA9i lines was lower than the weight of pollinated fruits of the wild type (WT), the parthenocarpic fruits presented redder and more saturated colors and higher levels of total soluble solids and titratable acidity than the WT fruits.


2000 ◽  
Vol 13 (3) ◽  
pp. 297-308 ◽  
Author(s):  
Yu-Ming Hou ◽  
Rick Sanders ◽  
Virgina M. Ursin ◽  
Robert L. Gilbertson

Transgenic tomato plants expressing wild-type or mutated BV1 or BC1 movement proteins from Bean dwarf mosaic virus (BDMV) were generated and examined for phenotypic effects and resistance to Tomato mottle virus (ToMoV). Fewer transgenic plants were recovered with the wild-type or mutated BC1 genes, compared with the wild-type or mutated BV1 genes. Transgenic tomato plants expressing the wild-type or mutated BV1 proteins appeared normal. Interestingly, although BDMV induces only a symptomless infection in tomato (i.e., BDMV is not well adapted to tomato), transgenic tomato plants expressing the BDMV BC1 protein showed a viral disease-like phenotype (i.e., stunted growth, and leaf mottling, curling, and distortion). This suggests that the symptomless phenotype of BDMV in tomato is not due to a host-specific defect in the BC1 protein. One transgenic line expressing the BC1 gene did not show the viral disease-like phenotype. This was associated with a deletion in the 3′ region of the gene, which resulted in expression of a truncated BC1 protein. Several R0 plants, expressing either wild-type or mutated BV1 or BC1 proteins, showed a significant delay in ToMoV infection, compared with non-transformed plants. R1 progeny plants also showed a significant delay in ToMoV infection, but this delay was less than that in the R0 parents. These results also demonstrate that expression of viral movement proteins, in transgenic plants, can have deleterious effects on various aspects of plant development.


2014 ◽  
Vol 27 (10) ◽  
pp. 1159-1169 ◽  
Author(s):  
Laura Campos ◽  
Purificación Lisón ◽  
María Pilar López-Gresa ◽  
Ismael Rodrigo ◽  
Laura Zacarés ◽  
...  

Hydroxycinnamic acid amides (HCAA) are secondary metabolites involved in plant development and defense that have been widely reported throughout the plant kingdom. These phenolics show antioxidant, antiviral, antibacterial, and antifungal activities. Hydroxycinnamoyl-CoA:tyramine N-hydroxycinnamoyl transferase (THT) is the key enzyme in HCAA synthesis and is induced in response to pathogen infection, wounding, or elicitor treatments, preceding HCAA accumulation. We have engineered transgenic tomato plants overexpressing tomato THT. These plants displayed an enhanced THT gene expression in leaves as compared with wild type (WT) plants. Consequently, leaves of THT-overexpressing plants showed a higher constitutive accumulation of the amide coumaroyltyramine (CT). Similar results were found in flowers and fruits. Moreover, feruloyltyramine (FT) also accumulated in these tissues, being present at higher levels in transgenic plants. Accumulation of CT, FT and octopamine, and noradrenaline HCAA in response to Pseudomonas syringae pv. tomato infection was higher in transgenic plants than in the WT plants. Transgenic plants showed an enhanced resistance to the bacterial infection. In addition, this HCAA accumulation was accompanied by an increase in salicylic acid levels and pathogenesis-related gene induction. Taken together, these results suggest that HCAA may play an important role in the defense of tomato plants against P. syringae infection.


2017 ◽  
Vol 9 (6) ◽  
pp. 131
Author(s):  
Wang Xiuqin ◽  
Yu Song ◽  
Wang Yue ◽  
Weidong Zhang ◽  
Gao Qingrong

Photo-thermo sensitive male sterile (PTMS) line is one of the important materials in utilizing heterosis in crops. Wheat line BNS (Bainong sterility) is an important nuclear-controlling PTMS line and suitable for growing and seed production in Huang Huai wheat zone in China. It has genetic stability with male sterility when sowing in autumn and male fertility when sowing in spring. Their thermosensitive periods were between stamen and pistil differentiation stage and anther connective stage and they could be regarded key periods for fertility conversion in BNS. To determine the molecular mechanisms of fertility conversion at thermosensitive period, we investigated characters of seed setting, anther and pollen grain of fertile and sterile BNS plants and compared young spike proteome patterns at their thermosensitive periods between the two BNS plants. The results showed that sterile plants had lower seed setting rate and pollen number, small pollen grain and lower pollen vitality than fertile plants. Out of protein spots reproducibly detected and analyzed on two dimensional electrophoresis gels, 76 spots showed significant changes in at least one BNS plant and 36 spots were identified by MALDI-TOF MS. The results showed that proteins involved in multiple biochemical pathways were differentially expressed at thermosensitive period between the two plants, including energy metabolism, stress response, signal transduction and regulation, protein process, amino acid and fatty acid metabolism, nucleic acid metabolism etc. Some of these proteins are reported to be involved in the abortion of anther or pollen grains in MS plants, such as energy metabolism and anti oxidative stress, and some were found to be novel proteins involved in the fertility conversion, such as phytohormones regulation. These results indicated that proteins related with anther or pollen development had expressed differently between the two BNS plants before anther development and phytohormones and signal transduction might be involved in the regulation of fertility conversion at thermosensitive period. Our studies have provided new insight to reveal the molecular mechanisms of fertility conversion at thermosensitive period in PTMS wheat.


1994 ◽  
Vol 119 (3) ◽  
pp. 642-647 ◽  
Author(s):  
P.B. McGarvey ◽  
M.S. Montasser ◽  
J.M. Kaper

Transgenic tomato plants (Lycopersicon esculentum Mill.) expressing cucumber mosaic virus (CMV) satellite RNA fused to a gene for β-glucuronidase were produced using Agrobacterium-mediated transformation. The R1 progeny of self-crossed R0 plants were challenge-inoculated with virion or RNA preparations of CMV or tomato aspermy virus (TAV). The transgenic plants challenged with CMV-1 showed mild disease symptoms in the first 2 weeks postchallenge followed by a decrease in symptoms, resulting in little difference between the transgenic and uninfected control group by the fourth week. Enzyme-linked immunosorbent assay results showed about a 10-fold decrease in virus accumulation in the transgenic plants compared to controls. Tolerance was evident only in plants that contained the recombinant insert and produced mature unit-length satellite RNA after CMV infection. Plants challenged with TAV showed no significant tolerance to virus-induced symptoms.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 569c-569
Author(s):  
John R. Stommel ◽  
Marie E. Tousignant ◽  
Thanda Wai ◽  
Jacobus M. Kaper

Viral satellite RNA associated with cucumber mosaic virus (CMV) is know to modulate CMV symptomology. Virulent CMV associated RNA 5 (CARNA 5) satellites may intensify crop disease. Naturally occurring variants of these satellites, however, attenuate CMV symptoms. Satellite transgenic tomato plants expressing the S-CARNA 5 or 1-CARNA 5 ameliorating forms of the satellite were evaluated under simulated CMV epidemic conditions in USDA–APHIS approved field trials. Trials conducted at Beltsville, Md., in 1994 and 1995 demonstrated that CMV can be effectively controlled under field conditions in satellite transgenic plants. Yields of transgenic lines infected with CMV were 50%–65% greater than that of non-transgenic infected controls. Yields of noninfected transgenic lines ranged from 5% greater than, to 33% less than, noninfected nontransgenic controls. Expression of CARNA 5 in inoculated transgenic plants greatly reduced CMV foliar symptoms and virus titers when compared to inoculated control plants. Levels of CARNA 5 were detected at varying levels in infected transgenic plants throughout the growing season. Virus or satellite was not detected in samples collected from tomato border plants and weeds growing inside and outside a nonhost crop border surrounding the test plot. Field tests conducted in 1996 will evaluate transgenic tomato plants with a double construct coding for the CMV coat protein gene and 1-CARNA 5 satellite.


Development ◽  
1993 ◽  
Vol 119 (Supplement) ◽  
pp. 77-84
Author(s):  
Robert E. Pruitt ◽  
Martin Hülskamp ◽  
Steven D. Kopczak ◽  
Sara E. Ploense ◽  
Kay Schneitz

Many events in plant development are regulated by the interactions of neighboring cells. We are interested in determining what sorts of molecules act as signals and/or receptors in these interactions and how these mechanisms relate to those used in animals and fungi. We are presently working on two different types of systems to try to address this question. In one case we are starting at the molecular level and characterizing a family of receptor protein kinase genes which seem natural candidates for mediating cellular interactions. By analyzing the expression patterns of these genes as well as the phenotypes of transgenic plants bearing altered genes we hope to determine what roles these proteins play in plant development. In the second case we are starting from the organismic level and using genetics to identify genes essential to a whole range of cellular interactions which are required for proper male gametophyte development during reproduction. These interactions involve both recognition of the pollen grain to verify that it is from the correct species and also a transfer of positional information from the female to the male which first allows the pollen tube to determine the polarity of the stigmatic cell on which it has germinated and later provides 'guidance' for the elongating tube to find the ovule.


Sign in / Sign up

Export Citation Format

Share Document