scholarly journals Human Cytomegalovirus Infection Induces High Expression of Prolactin and Prolactin Receptors in Ovarian Cancer

Biology ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 44 ◽  
Author(s):  
Afsar Rahbar ◽  
Amira AlKharusi ◽  
Helena Costa ◽  
Mattia Russel Pantalone ◽  
Ourania N. Kostopoulou ◽  
...  

One of the potential biomarkers for ovarian cancer patients is high serum level of prolactin (PRL), which is a growth factor that may promote tumor cell growth. The prolactin receptor (PRLR) and human cytomegalovirus (HCMV) proteins are frequently detected in ovarian tumor tissue specimens, but the potential impact of HCMV infection on the PRL system have so far not been investigated. In this study, HCMV’s effects on PRL and PRLR expression were assessed in infected ovarian cancer cells (SKOV3) by PCR and Western blot techniques. The levels of both PRL and PRLR transcripts as well as the corresponding proteins were highly increased in HCMV-infected SKOV3 cells. Tissue specimens obtained from 10 patients with ovarian cancer demonstrated high expression of PRLR, HCMV-IE, and pp65 proteins. Extensive expression of PRLR was detected in all examined ovarian tumor tissue specimens except for one from a patient who had focal expression of PRLR and this patient was HCMV-negative in her tumor. In conclusion, PRL and PRLR were induced to high levels in HCMV-infected ovarian cancer cells and PRLR expression was extensively detected in HCMV-infected ovarian tissue specimens. Highly induced PRL and PRLR by HCMV infection may be of relevance for the oncomodulatory role of this virus in ovarian cancer.

2014 ◽  
Vol 24 (2) ◽  
pp. 218-225 ◽  
Author(s):  
Angeles Alvarez Secord ◽  
Deanna Teoh ◽  
Jingquan Jia ◽  
Andrew B. Nixon ◽  
Lisa Grace ◽  
...  

PurposeThis study aimed to explore the activity of dasatinib in combination with docetaxel, gemcitabine, topotecan, and doxorubicin in ovarian cancer cells.MethodsCells with previously determined SRC pathway and protein expression (SRC pathway/SRC protein IGROV1, both high; SKOV3, both low) were treated with dasatinib in combination with the cytotoxic agents. SRC and paxillin protein expression were determined pretreatment and posttreatment. Dose-response curves were constructed, and the combination index (CI) for drug interaction was calculated.ResultsIn the IGROV1 cells, dasatinib alone reduced phospho-SRC/total SRC 71% and p-paxillin/t-paxillin ratios 77%. Phospho-SRC (3%–33%; P = 0.002 to 0.04) and p-paxicillin (6%–19%; P = 0.01 to 0.05) levels were significantly reduced with dasatinib in combination with each cytotoxic agent. The combination of dasatinib and docetaxel, gemcitabine, or topotecan had a synergistic antiproliferative effect (CI, 0.49–0.68), whereas dasatinib combined with doxorubicin had an additive effect (CI, 1.08).In SKOV3 cells, dasatinib resulted in less pronounced reductions of phospho-SRC/total SRC (49%) and p-paxillin/t-paxillin (62%). Phospho-SRC (18%; P < 0.001) and p-paxillin levels (18%; P = 0.001; 9%; P = 0.007) were significantly decreased when dasatinib was combined with docetaxel and topotecan (p-paxillin only). Furthermore, dasatinib combined with the cytotoxics in the SKOV3 cells produced an antagonistic interaction on the proliferation of these cells (CI, 1.49–2.27).ConclusionsDasatinib in combination with relapse chemotherapeutic agents seems to interact in a synergistic or additive manner in cells with high SRC pathway activation and protein expression. Further evaluation of dasatinib in combination with chemotherapy in ovarian cancer animal models and exploration of the use of biomarkers to direct therapy are warranted.


2009 ◽  
Vol 202 (1) ◽  
pp. 167-177 ◽  
Author(s):  
Liyuan Tian ◽  
Zhiqiang Wu ◽  
Yali Zhao ◽  
Yuanguang Meng ◽  
Yiling Si ◽  
...  

Previously, we investigated the induction effect of LRP16 expression by estrogen (17β-estradiol, E2) and established a feed-forward mechanism that activated estrogen receptor α (ERα) transactivation in estrogen-dependent epithelial cancer cells. LRP16 is required for ERα signaling transduction by functioning as an ERα coactivator. In this study, we demonstrated that LRP16 expression was upregulated in E2-responsive BG-1 ovarian cancer cells, but was downregulated in estrogen-resistant SKOV3 ovarian cancer cells. Pure estrogen antagonist ICI 182 780 did not affect LRP16 expression in SKOV3 cell. The unliganded ERα upregulated LRP16 expression and enhanced LRP16 promoter activity in SKOV3 cells; however, this induction was blocked by estrogen stimulation. Results from chromatin immunoprecipitation experiment revealed a strong recruitment of the unliganded ERα at LRP16 promoter in the absence of estrogen; however, ERα was largely released from the DNA upon E2 stimulation. Modulation in LRP16 expression level did not significantly change the proliferation rate of SKOV3 cells and the growth responsiveness of cells to E2. Knockdown of LRP16 by RNA interference in SKOV3 cells markedly attenuated estrogen response element-dependent ERα reporter gene activity and E2-induced c-Myc expression. Our study suggests a novel mechanism of estrogen resistance of ovarian cancer by which estrogen-repressed signaling pathway antagonizes estrogen-activated signaling transduction.


2016 ◽  
pp. 1031-1037 ◽  
Author(s):  
J. H. KIM ◽  
J.-S. CHOI

Ginsenoside has been reported to have therapeutic effects for some types of cancer, but its effect on ovarian cancer cells has not been evaluated. In this study, we monitored the effects of ginsenoside-Rh2 (Rh2) on the inhibition of cell proliferation and the apoptotic process in the ovarian cancer cell line SKOV3 using an MTT assay and TUNEL assay. We found that Rh2 inhibited cell proliferation and significantly induced apoptosis. We confirmed the apoptotic effects of Rh2 using western blot analysis of apoptosis-related proteins. Specifically, the levels of cleaved poly ADP ribose polymerase (PARP) and cleaved caspase-3 significantly increased in SKOV3 cells treated with Rh2. Therefore, Rh2 clearly suppressed the growth of SKOV3 cells in vitro, which was associated with induction of the apoptosis pathway. Moreover, the migration assay showed that Rh2 inhibited the invasive ability of SKOV3 cells. Taken together, our results suggest that Rh2 has anticancer effects in SKOV3 cells through inhibition of cell proliferation and induction of apoptosis. Considering the therapeutic potential of Rh2, more studies should be carried out to facilitate the future application of this natural product as a potential anti-cancer agent.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258115
Author(s):  
Demiana H. Hanna ◽  
Gamal R. Saad

Purpose This study aims to prepare folic acid coated tin oxide nanoparticles (FA-SnO2 NPs) for specifically targeting human ovarian cancer cells with minimum side effects against normal cells. Methods The prepared FA-SnO2 NPs were characterized by FT-IR, UV-vis spectroscopy, XRD, SEM and TEM. The inhibition effects of FA-SnO2 NPs against SKOV3 cancer cell were tested by MTT and LDH assay. Apoptosis induction in FA-SnO2 NPs treated SKOV3 cells were investigated using Annexin V/PI, AO/EB and Comet assays and the possible mechanisms of the cytotoxic action were studied by Flow cytometry, qRT-PCR, Immunohistochemistry, and Western blotting analyses. The effects of FA-SnO2 NPs on reactive oxygen species generation in SKOV3 cells were also examined. Additionally, the safety of utilization FA-SnO2 NPs were studied in vivo using Wister rats. Results The obtained FA-SnO2 NPs displayed amorphous spherical morphology with an average diameter of 157 nm and a zeta potential value of -24 mV. Comparing to uncoated SnO2 NPs, FA-SnO2 NPs had a superior inhibition effect towards SKOV3 cell growth that was suggested to be mediated through higher reactive oxygen species generation. It was showed that FA-SnO2 NPs increased significantly the % of apoptotic cells in the sub- G1 and G2/M phases with a higher intensity comet nucleus in SKOV3 treated cells. Furthermore, FA-SnO2 NPs was significantly increased the expression levels of P53, Bax, and cleaved Caspase-3 and accompanied with a significant decrease of Bcl-2 in the treated SKOV3 cells. Conclusion Overall, the results suggested that an increase in cellular FA-SnO2 NPs internalization resulted in a significant induced cytotoxicity in SKOV3 cancer cells in dose-dependent mode through ROS-mediated cell apoptosis that may have occurred through mitochondrial pathway. Additionally, the results confirmed the safety of utilization FA-SnO2 NPs against living systems. So, FA-SnO2 NPs with a specific targeting moiety may be a promising therapeutic candidate for human ovarian cancer.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Wenjing Hu ◽  
Min Li ◽  
Youguo Chen ◽  
Xinxian Gu

Abstract Background Ovarian cancer is the most lethal gynecologic malignancy worldwide. Olaparib, an inhibitor of poly (ADP-ribose) polymerase (PARP), is becoming widely used in ovarian cancer treatment. The overall survival of ovarian cancer has not been significantly changed over the past decades and ovarian cancer has become increasingly resistant to the Olaparib. Ubiquitin-conjugating enzyme E2S (UBE2S) has been proved to promote malignant behaviors in many cancers. However, the function of UBE2S in the development and Olaparib resistance of ovarian cancer are unclear. Materials and methods In this study, we detected the expression of UBE2S in normal fallopian tube (FT) and HGSOC tissues. A2780 and SKOV3 cells were stably transfected with PCMV-UBE2S, PCMV-UBE2S-C95S, UBE2S shRNAs, and negative controls. The CCK8 assay and clonogenic assay were conducted to analyze ovarian cancer proliferation and Olaparib resistance. The transwell assay was performed to determine the migration and invasion of ovarian cancer cells. The relative protein levels of the Wnt/β-catenin signaling pathway were tested using western blot. The ovarian cancer cells were treated with XAV-939 to investigate the role of Wnt/β-catenin signaling pathway in Olaparib resistance. Moreover, we repeated some above procedures in the xenograft model. Results The results demonstrated that UBE2S was highly upregulated in HGSOC and that high UBE2S expression was correlated with poor outcomes in HGSOC. UBE2S promoted ovarian cancer proliferation and drived the migration and invasion of ovarian cancer cells. UBE2S activated the Wnt/β-catenin signaling pathway in ovarian cancer resulting in Olaparib resistance in vitro and in vivo. Furthermore, UBE2S enhanced the proliferation and Olaparib resistance of ovarian cancer in its enzymatic activity dependent manner. Conclusions These data suggest a possible molecular mechanism of proliferation and metastasis of ovarian cancer and highlight the potential role of UBE2S as a therapeutic target in ovarian cancer.


2019 ◽  
Vol 28 (1_suppl) ◽  
pp. 1S-13S ◽  
Author(s):  
Xiao Zhang ◽  
Keqin Yan ◽  
Lin Deng ◽  
Jing Liang ◽  
Haiyan Liang ◽  
...  

Ovarian cancer is the leading cause of death among gynecological malignancies. Cyclooxygenase 2 is widely expressed in various cancer cells and participates in the occurrence and development of tumors by regulating a variety of downstream signaling pathways. However, the function and molecular mechanisms of cyclooxygenase 2 remain unclear in ovarian cancer. Here, we demonstrated that cyclooxygenase 2 was highly expressed in ovarian cancer and the expression level was highly correlated with ovarian tumor grades. Further, ovarian cancer cells with high expression of cyclooxygenase 2 exhibit enhanced proliferation and invasion abilities. Specifically, cyclooxygenase 2 promoted the release of prostaglandin E2 upregulated the phosphorylation levels of phospho-nuclear factor-kappa B p65. Celecoxib, AH6809, and BAY11-7082 all can inhibit the promoting effect of cyclooxygenase 2 on SKOV3 and OVCAR3 cell proliferation and invasion. Besides, celecoxib inhibited SKOV3 cell growth in the xenograft tumor model. These data suggest that high expression of cyclooxygenase 2 promotes the proliferation and invasion of ovarian cancer cells through the prostaglandin E2/nuclear factor-kappa B signaling pathway. Cyclooxygenase 2 may be a potential therapeutic target for the treatment of ovarian cancer.


2006 ◽  
Vol 1 ◽  
pp. 117727190600100 ◽  
Author(s):  
Akiko Horiuchi ◽  
Cuiju Wang ◽  
Norihiko Kikuchi ◽  
Ryosuke Osada ◽  
Toshio Nikaido ◽  
...  

BRCA1 is a tumor suppressor which plays a crucial role in the repair of DNA double-strand breaks, and its abnormality is responsible for hereditary ovarian cancer syndrome. It has recently been reported that reduced expression of BRCA1 is also common in sporadic ovarian carcinoma via its promoter hypermethylation, and that ovarian carcinoma patients negative for BRCA1 expression showed favorable prognosis. To address if BRCA1 expression plays a role in the chemotherapeutic response, we analyzed the effect of BRCA1 suppression on the sensitivity to cisplatin and paclitaxel in ovarian cancer cells. Specific siRNA for BRCA1 gene was transfected into 3 ovarian cancer cell lines with various p53 status. Reduced expression of BRCA1 by transfection of BRCA1-siRNA resulted in a 5.3-fold increase in sensitivity to cisplatin in p53-wild A2780 cells, but not in p53-mutated A2780/CDDP and p53-deleted SKOV3 cells. Regarding the sensitivity to paclitaxel, BRCA1 suppression caused no significant changes in all the 3 cell lines. For ionizing radiation sensitivity, BRCA1 suppression also showed a significant higher sensitivity in A2780 cells. Growth curve and cell cycle analyses showed no significant differences between BRCA1-siRNA-transfected A2780 cells and control cells. However, cisplatin treatment under suppression of BRCA1 showed a significantly increased apoptosis along with up-regulation of p53 and p21 in A2780 cells. Accordingly, reduced expression of BRCA1 enhances the cisplatin sensitivity and apoptosis via up-regulation of p53 and p21, but does not affect the paclitaxel sensitivity. Expression of BRCA1 might be an important biomarker for cisplatin resistance in ovarian carcinoma.


2021 ◽  
Vol 11 (4) ◽  
pp. 12252-12266

The incidence of cancer in the world is growing exponentially. Therefore, the search for targeted cancer therapy methods is the most urgent and actively developing the biomedicine field. This work is devoted to studying RHAMM-target peptides' effect on the proliferation and viability of ovarian cancer, prostate cancer, breast carcinoma, and adenocarcinoma of the breast duct cells. Cell proliferation was examined by a BrdU-based proliferation assay. Cell viability was assayed by the fluorescence method. It has been established that RHAMM-target peptides at a concentration of 2х10-7 M inhibited on ~ 55 % proliferation of MDA-MB-231 cells, on ~ 85 % proliferation of PC3m-LN4, and ~ 50 % proliferation of SKOV3 cells for 24 h. The results showed that the peptides inhibited the viability of ovarian cancer cells. In particular, peptide EEDFGEEAEEEA inhibited ovarian cancer cells' viability by 54%, peptide VEGEGEEGEEY by 63%, and peptide FTEAESNMNDLV by 57%. RHAMM-target peptides did not affect fibroblasts (non-tumor cells) and fibroblasts RHAMM(-/-). This work showed that RHAMM-target peptides at low concentrations of inhibited cancer cells' proliferation and viability. This effect was RHAMM mediated. RHAMM-target peptides are promising candidates for anti-cancer drugs.


Sign in / Sign up

Export Citation Format

Share Document