scholarly journals Calibrated Numerical Approach for the Dynamic Analysis of Glass Curtain Walls under Spheroconical Bag Impact

Buildings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 154
Author(s):  
Alessia Bez ◽  
Chiara Bedon ◽  
Giampiero Manara ◽  
Claudio Amadio ◽  
Guido Lori

The structural design of glass curtain walls and facades is a challenging issue, considering that building envelopes can be subjected extreme design loads. Among others, the soft body impact (SBI) test protocol represents a key design step to protect the occupants. While in Europe the standardized protocol based on the pneumatic twin-tire (TT) impactor can be nowadays supported by Finite Element (FE) numerical simulations, cost-time consuming experimental procedures with the spheroconical bag (SB) impactor are still required for facade producers and manufacturers by several technical committees, for the impact assessment of novel systems. At the same time, validated numerical calibrations for SB are still missing in support of designers and manufacturers. In this paper, an enhanced numerical approach is proposed for curtain walls under SB, based on a coupled methodology inclusive of a computationally efficient two Degree of Freedom (2-DOF) and a more geometrically accurate Finite Element (FE) model. As shown, the SB impactor is characterized by stiffness and dissipation properties that hardly match with ideal rigid elastic assumptions, nor with the TT features. Based on a reliable set of experimental investigations and records, the proposed methodology acts on the time history of the imposed load, which is implicitly calibrated to account for the SB impactor features, once the facade features (flexibility and damping parameters) are known. The resulting calibration of the 2-DOF modelling parameters for the derivation of time histories of impact force is achieved with the support of experimental measurements and FE model of the examined facade. The potential and accuracy of the method is emphasized by the collected experimental and numerical comparisons. Successively, the same numerical approach is used to derive a series of iso-damage curves that could support practical design calculations.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Gaosheng Wang ◽  
Yunhou Sun ◽  
Ao Zhang ◽  
Lei Zheng ◽  
Yuzheng Lv ◽  
...  

Based on experiments and finite element analysis, the impact resistance of metal flexible net was studied, which can provide reference for the application of metal flexible net in rock fall protection. The oblique (30 degrees) impact experiment of metal flexible net was carried out, the corresponding finite element (FE) to the experiment was established, and the FE model was verified by simulation results to the experimental tests from three aspects: the deformation characteristics of metal flexible net, the time history curves of impact force on supporting ropes, and the maximum instantaneous impact force on supporting ropes. The FE models of metal flexible nets with inclination angles of 0, 15, 30, 45, 60, and 75 degrees were established, and the impact resistance of metal flexible nets with different inclination angles was analyzed. The research shows that the metal flexible net with proper inclination can bounce the impact rock fall out of the safe area and prevent rock fall falling on the metal flexible net, thus realizing the self-cleaning function. When the inclination angle of the metal flexible net is 15, 30, and 45 degrees, respectively, the bounce effect after impact is better, the remaining height is improved, the protection width is improved obviously, and the impact force is reduced. Herein, the impact force of rock fall decreases most obviously at 45 degrees inclination, and the protective performance is relatively good.


2006 ◽  
Author(s):  
Tamer M. Wasfy ◽  
Hatem Wasfy

An object-oriented graphical modeling environment, which includes integrated pre-processor, post-processor, and explicit time-integration finite element solver, for predicting the dynamic response of tires mounted on suspension systems is described. The pre-processor allows creating a hierarchical preliminary model of the system including the tire, suspension system, and terrain. The pre-processor includes an automatic mesh generator for generating the finite element (FE) model from the preliminary model. A tire preliminary object allows defining the tire cross-section, specifying the number of elements along the tire circumference, and defining beam elements along the circumference and meridian direction to model the various tire structural components such as the bead, ply, and belt. Other preliminary model objects include rigid body, linear spring-damper, leaf-spring, spherical joint, revolute joint, prismatic joint, and polygonal terrain. The user can also include support objects such as physical materials, and scalar graphs (for time-histories of known quantities). The preprocessor includes a model tree-editor which allows adding objects and changing their properties. The FE model is submitted to the solver which generates the system's motion time-history. The FE model consists of solid elements (including brick, beam, and truss), rigid bodies, and joints. The post-processor is used to display the analysis results, which include an animation of the motion of the system, coloring/contouring the tire using various scalar response quantities, and various types of graphs of response quantities (such as time-history, frequency and time-averaged graphs). The graphical output of the pre-processor and the post-processor can be displayed either on the computer screen or in immersive stereoscopic virtual-reality facilities. Users can control the visualization using the tree-editor.


2021 ◽  
Vol 263 (1) ◽  
pp. 5301-5309
Author(s):  
Luca Alimonti ◽  
Abderrazak Mejdi ◽  
Andrea Parrinello

Statistical Energy Analysis (SEA) often relies on simplified analytical models to compute the parameters required to build the power balance equations of a coupled vibro-acoustic system. However, the vibro-acoustic of modern structural components, such as thick sandwich composites, ribbed panels, isogrids and metamaterials, is often too complex to be amenable to analytical developments without introducing further approximations. To overcome this limitation, a more general numerical approach is considered. It was shown in previous publications that, under the assumption that the structure is made of repetitions of a representative unit cell, a detailed Finite Element (FE) model of the unit cell can be used within a general and accurate numerical SEA framework. In this work, such framework is extended to account for structural-acoustic coupling. Resonant as well as non-resonant acoustic and structural paths are formulated. The effect of any acoustic treatment applied to coupling areas is considered by means of a Generalized Transfer Matrix (TM) approach. Moreover, the formulation employs a definition of pressure loads based on the wavenumber-frequency spectrum, hence allowing for general sources to be fully represented without simplifications. Validations cases are presented to show the effectiveness and generality of the approach.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 162
Author(s):  
Silvana Mattei ◽  
Luca Cozzarini ◽  
Chiara Bedon

Anti-shatter safety films (ASFs) are often used for structural glass applications. The goal is to improve the response of monolithic elements and prevent fragments from shattering. Thus, the main reason behind their use is the possibility to upgrade safety levels against the brittle failure of glass and minimize the number of possible injuries. However, the impact response of glass elements bonded with Polyethylene terephthalate (PET)-films and pressure sensitive adhesives (PSAs) still represents a research topic of open discussion. Major challenges derive from material characterization and asymmetrical variability under design loads and ageing. In particular, the measurement of interface mechanical characteristics for the adhesive layer in contact with glass is a primary parameter for the ASF choice optimization. For this reason, the present paper presents an experimental campaign aimed at calibrating some basic mechanical parameters that provide the characterization of constitutive models, such as tensile properties (yielding stress and Young modulus) for PET-film and adhesive properties for PSA (energy fracture and peel force). In doing so, both tensile tests for PET-films and peeling specimens are taken into account for a commercially available ASF, given that the peeling test protocol is one of most common methods for the definition of adhesion properties. Moreover, an extensive calibration of the Finite Element (FE) model is performed in order to conduct a parametric numerical analysis of ASF bonded glass solutions. Furthermore, a Kinloch approach typically used to determine the fracture energy of a given tape by considering a variable peel angle, is also adopted to compare the outcomes of calibration analyses and FE investigations on the tested specimens. Finally, a study of the effect of multiple aspects is also presented. The results of the experimental program and the following considerations confirm the rate dependence and ageing dependence in peel tests.


2019 ◽  
Vol 8 (3) ◽  
pp. 87-98
Author(s):  
Alaa Abbas ◽  
Felicite Ruddock ◽  
Rafid Alkhaddar ◽  
Glynn Rothwell ◽  
Iacopo Carnacina ◽  
...  

The use of a finite element (FE) method and selection of the appropriate model to simulate soil elastoplastic behaviour has confirmed the importance and sensitivity of the soil properties on the accuracy when compared with experimental data. The properties of the filling soil play a significant role in determining levels of deformation and displacement of both the soil and subterranean structures when using the FE model simulation. This paper investigates the impact of the traffic load on the filling soil deformation when using the traditional method, one pipe in a trench, and a new method, two pipes in a single trench one over the other, for setting up a separate sewer system. The interaction between the buried pipes and the filling soils has been simulated using an elastoplastic FE model. A modified Drucker–Prager cap constitutive model was used to simulate the stress-strain behaviours of the soil. A series of laboratory tests were conducted to identify the elastoplastic properties of the composite soil used to bury the pipes. The FE models were calibrated using a physical lab model for testing the buried pipes under applied load. This allows the FE model to be confidently upgraded to a full-scale model. The pipe-soil interactions were found to be significantly influenced by the soil properties, the method of placing the pipes in the trench and the diameters of the buried pipes. The deformation of the surface soil was decreased by approximately 10% when using the new method of setting up the separate sewer.


2014 ◽  
Vol 1018 ◽  
pp. 207-214 ◽  
Author(s):  
Markus Grüber ◽  
Marius Oligschläger ◽  
Gerhard Hirt

Within today’s sheet processing lines, roller levellers are included in the production chain to eliminate initial curvature and reduce internal stresses of the sheet material. Despite the desire to achieve fully automated industrial processes, roller levellers still have to be set manually by an operator based on his experience and empirical data. Therefore, this paper evaluates an enhanced numerical approach to predict the vertical roll position, the so called roll intermesh, in the last load triangle. To gain the respective machine setting, a closed-loop control based on an actual curvature measurement is implemented in the finite element (FE) programme Abaqus utilising a user-subroutine. Thus, the presented FE model allows the adjustment of the roller leveller leading to a flat strip in a single simulation run within the accuracy of the FE prediction. Additionally, the FE model provides the chance to develop and test closed-loop controls for roller levelling. Complementing the results gained from the FE model, experiments have been conducted on a down-sized roller leveller with aluminium sheets (AA5005). First results obtained with the presented numerical model proved that the roll intermesh of the last load triangle was determined successfully and the use of an actual curvature measurement within the FE model provides enhanced accuracy.


2016 ◽  
Vol 711 ◽  
pp. 966-973
Author(s):  
Joanna M. Dulinska ◽  
Izabela J. Murzyn

In the paper a non-linear dynamic response of a concrete highway tunnel to a natural earthquake is presented. The acceleration time history of the registered shock was applied as seismic excitation acting in three directions. The peak ground acceleration (PGA) of the shock was 0.5 g. A three-dimensional FE model of the concrete tunnel section (600 m long) and surrounding soil layers was created with the ABAQUS software. To represent the inelastic behavior of the tunnel under the earthquake, a concrete damage plasticity model was assumed as a constitutive model for the concrete. A model of spatially varying ground motion, which takes so called “wave passage effect” was implemented for the dynamic analysis. Two velocities of seismic wave propagation were assumed: 500 and 1000 m/s. These velocities are typical for soft and stiff bedrock, respectively. It turned out that in case of stiffer bedrock, in which seismic waves propagate faster, the damage pattern shows less cracking than in case of soft bedrock. The distribution of plastic and damage computed indices also allowed to assess the impact of the shock on the structure. It turned out that the analyzed shock with PGA of 0.5 g was strong enough to cause severe destruction (cracking) in the tunnel lining. Finally, the transverse pattern of cracks, that was obtained from the calculations, was in good agreement with damages observed during severe earthquakes.


Author(s):  
Aihong Zhao ◽  
Ken Digges ◽  
Mark Field ◽  
David Richens

Blunt traumatic rupture of the carotid artery is a rare but life threatening injury. The histology of the artery is key to understanding the aetiology of this injury. The carotid artery is composed of three layers known as the tunica intima, media, and adventitia, with distinct biomechanical properties. In order to examine the behaviour of the carotid artery under external load we have developed a three layer finite element model of this vessel. A rubber-like material model from LS-DYNA was selected for the FE model. The Arbitrary-Lagrangian Eulerian (ALE) approach was adopted to simulate the interaction between the fluid (blood) and the structure (carotid). To verify the FE model, the impact bending tests are simulated using this FE model. Simulation results agree with tests results well. Furthermore, the mechanical behaviour of carotid artery tissues under impact loading were revealed by the simulations. The results provide a basis for a more in-depth investigation of the carotid artery in vehicle crashes. In addition, it provides a basis for further work on aortic tissue finite element modeling.


2010 ◽  
Vol 163-167 ◽  
pp. 327-331 ◽  
Author(s):  
Liang Zheng ◽  
Zhi Hua Chen

Finite element model of both the single-layer Schwedler reticulated dome with the span of 50m and a Cuboid impactor were developed, incorporating ANSYS/LS-DYNA. PLASTIC_KINEMATIC (MAT_003) material model which takes stain rate into account was used to simulate steel under impact load. The automatic point to surface contact (NODES TO SURFACE) was applied between the dome and impact block. Three stages of time history curve of the impact force on the apex of the single-layer Scheduler reticulated dome including the impact stage, stable stalemate stage, the decaying stage were generalized according to its dynamic response. It must be pointed out that the peak of the impact force of the single-layer reticulated dome increase with the increase of the weight and the velocity of the impact block, but the change of the velocity of the impact block is more sensitive than the change of weight of the impact block for the effect of the peak of the impact force, and a platform value of the impact force of the single-layer reticulated dome change near a certain value, and the duration time of the impact gradually increase. Then four stages of time history curve of the impact displacement were proposed according to the dynamic response of impact on the apex of the single-layer reticulated dome based on numerical analysis. Four stages include in elastic deformation stage, plastic deformation stage, elastic rebound stage, free vibration stage in the position of the residual deformation.


2013 ◽  
Vol 315 ◽  
pp. 1-5 ◽  
Author(s):  
Perowansa Paruka ◽  
Waluyo Adi Siswanto

One of the important objectives in this research is investigating the behavior on the cylindrical tube structure via computer simulations. When a thin cylindrical structure is experienced an impact loading, the crushing process on impact can only be observed by a high speed camera. Recording the stress and strain data is also not possible experimentally. A numerical approach implementing finite element method with a dynamic-explicit code is an effective solution to observe the crushing process. A thin cylindrical structure found in aluminium can is modeled. A finite element impact simulation is then performed to observe the crushing process sequence and the stress and strain development history on axial impact employing IMPACT application program. An experimental of thin cylindrical structure on axial impact is conducted. The final crushing pattern after the impact is then compared with that from simulation. The result shows that final crushing pattern is in a good agreement with that shown in experiment. The stress and strain histories can be observed from the simulation.


Sign in / Sign up

Export Citation Format

Share Document