scholarly journals Accessing a New Dimension in TP53 Biology: Multiplex Long Amplicon Digital PCR to Specifically Detect and Quantitate Individual TP53 Transcripts

Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 769 ◽  
Author(s):  
Annette Lasham ◽  
Peter Tsai ◽  
Sandra J. Fitzgerald ◽  
Sunali Y. Mehta ◽  
Nicholas S. Knowlton ◽  
...  

TP53, the most commonly-mutated gene in cancer, undergoes complex alternative splicing. Different TP53 transcripts play different biological roles, both in normal function and in the progression of diseases such as cancer. The study of TP53’s alternative RNA splice forms and their use as clinical biomarkers has been hampered by limited specificity and quantitative accuracy of current methods. TP53 RNA splice variants differ at both 5’ and 3’ ends, but because they have a common central region of 618 bp, the individual TP53 transcripts are impossible to specifically detect and precisely quantitate using standard PCR-based methods or short-read RNA sequencing. Therefore, we devised multiplex probe-based long amplicon droplet digital PCR (ddPCR) assays, which for the first time allow precise end-to-end quantitation of the seven major TP53 transcripts, with amplicons ranging from 0.85 to 1.85 kb. Multiple modifications to standard ddPCR assay procedures were required to enable specific co-amplification of these long transcripts and to overcome issues with secondary structure. Using these assays, we show that several TP53 transcripts are co-expressed in breast cancers, and illustrate the potential for this method to identify novel TP53 transcripts in tumour cells. This capability will facilitate a new level of biological and clinical understanding of the alternatively-spliced TP53 isoforms.

2006 ◽  
Vol 3 (1) ◽  
pp. 1-10
Author(s):  
Heike Pospisil

Abstract Alternative splicing is one of the most important mechanisms to generate a large number of mRNA and protein isoforms from a small number of genes. Its study became one of the hot topics in computational genome analysis. The repository EASED (Extended Alternatively Spliced EST Database, http://eased.bioinf.mdc-berlin.de/) stores a large collection of splice variants predicted from comparing the human genome against EST databases. It enables finding new unpublished splice forms that could be interesting candidate genes for stage specific, diseases specific or tissue specific splicing. The main idea behind selecting specific splice forms is to compare the number and the origin of ESTs confirming one isoform with the number and the origin of ESTs confirming the opposite isoform. A measure asDcs is introduced to take into account the unequal distribution of ESTs per splice site on one hand, and the possible uncertainties due to the relatively low quality of EST data on the other hand. First, the number of ESTs per splice site is scaled with a modified Hill function. The measure asDcs computes in the second step the distance of each pair of ESTs from equipartition. Equipartition exists if for every number of adult ESTs the same number of embryonic ESTs. The effect of several input parameters for the scaling of true EST values is analysed and can be reproduced on http://cardigan.zbh.uni-hamburg.de/asDcs. Some of the obtained best scoring hits for selected parameters (transcription factor P65, drebrin, and fetuin) have been already described in literature as been involved in embryonic development. This result shows the plausibility of this approach and looks promising for the identification of unplublished embryo specific alternative splice sites in human.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2391-2391
Author(s):  
Anna Dolnik ◽  
Andreas Gerhardinger ◽  
Ursula Botzenhardt ◽  
Sabrina Heinrich ◽  
Richard Schlenk ◽  
...  

Abstract Abstract 2391 Poster Board II-368 Alternative mRNA splicing represents an effective mechanism of regulating gene function as well as a key element to increase the coding capacity of the human genome. Today, an increasing number of reports illustrates that aberrant splicing events can contribute to human disease and that alterations in the splicing machinery are common and functionally important for cancer development. Aberrant splice forms can for example have genome-wide effects by deregulating key signaling pathways. However, for most of the aberrant mRNA transcripts detected it remains unclear whether they directly contribute to the malignant phenotype or just represent a by-product of cellular transformation. Thus, more comprehensive analyses of the transcriptome splicing are warranted in order to get novel insights into the biology underlying malignancies like, e.g., acute myeloid leukemia (AML). Here, we performed a genome-wide screening of splicing events in AML using the Exon microarray platform GeneChip Human Exon 1.0 ST (Affymetrix). We analyzed forty AML cases with complex karyotypes and twenty Core Binding Factor (CBF) AML cases (entered on a multicenter trial for patients <60 years, AMLSG 07-04) using this microarray approach allowing the detection of splice variants. In order to detect alternative splicing events distinguishing different leukemia subgroups we applied a commercial and an open source software tool: XRAY version 3.9 (Biotique Systems) and the OneChannelGUI package for R (version 1.10.7 available at http://www.bioinformatica.unito.it/oneChannelGUI/). Using XRAY supervised analysis comparing subgroups of CBF and complex karyotype AML we identified 1120 transcripts to be potentially alternatively spliced. In parallel, the analysis of the same AML subgroups using the OneChannelGUI package in R revealed 1439 candidates with an overlap of only 211 genes. Of these transcripts, that have been indicated by both programs as potentially alternatively spliced, selected candidates were further investigated by RT-PCR, quantitative RT-PCR and sequence analysis for the presence of splice-variants. Of 26 candidate genes studied, we could confirm alternative splice forms for 5 genes that might potentially be involved in driving leukemogenesis, such as the protein coding gene arginine methyltransferase 1 (PRMT1), which regulates transcription through histone methylation and participates in DNA damage response. Furthermore, we could confirm differential exon usage in the protein tyrosine phosphatase non-receptor type (PTPN6) transcript, which encodes for a negative regulator of numerous signaling pathways involved in cell cycle control and apoptosis. Similarly, the mRNA of the protein Rho GTPase activating protein 4 (ARHGAP4), which has been shown to regulate cell motility, was alternatively spliced between CBF and complex karyotype subgroups. In summary, these first gene expression data demonstrate that the attempt to elucidate the splicing of transcriptome in AML by applying Exon microarray technology is challenging in particular with regard to the currently available software solutions. Nevertheless, our results show that this approach offers the ability to detect novel alternatively spliced candidate genes. Being involved in cell cycle control, regulation of transcription or remodeling of the cytoskeleton, alternative splicing of these genes might play a potential role in the pathomechanism of distinct AML subgroups. Thus, in the future more extensive Exon array profiling with more sophisticated software solutions at hand is likely to provide additional insights into the molecular mechanisms of leukemogenesis and might reveal novel targets for refined therapeutic strategies in AML. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Chris C R Smith ◽  
Loren H Rieseberg ◽  
Brent S Hulke ◽  
Nolan C Kane

AbstractAlternative spicing is an integral part of gene expression in multicellular organisms that allows for diverse mRNA transcripts and proteins to be produced from a single gene. However, most existing analyses have focused on macro-evolution, with only limited research on splice site evolution over shorter term, micro-evolutionary time scales. Here we examine splicing evolution that has occurred during domestication and observe 45 novel splice forms with strongly transgressive isoform compositions, representing 0.24% of analyzed transcripts. We identify loci associated with variation in the levels of these splice forms, finding that many novel transcripts were regulated by multiple alleles with non-additive interactions. A subset of these interactions involved the expression of individual spliceosome components. These overdominant and epistatic interactions often resulted in alteration in the protein-coding regions of the transcripts, resulting in frameshifts and truncations. By associating the splice variation in these genes with size and growth rate measurements, we found that none of the individual splice variants affected these plant traits significantly, but the cumulative expression of all aberrant transcripts did show a significant reduction in growth rate associated with higher proportions of disrupted transcripts. This demonstrates the importance of co-evolution of the different spliceosomal components and their regulators and suggests that these genes may contribute to evolution of reproductive isolation as Bateson-Dobzhansky-Muller incompatibility loci.Author summaryIn multicellular organisms, it is common that segments of pre-mRNA molecules are physically removed, and the remaining segments are spliced back together. Through splicing alternative combinations of segments together, organisms produce various mRNA molecules, and thus multiple proteins, using the information encoded in a single gene. Here, we investigated the RNA of two sunflower genotypes, one wild and one domesticated, as well as the hybrid offspring resulting from a cross between the two genotypes. We found certain mRNA molecules that were spliced exclusively in the hybrids and were absent in the examined parental lines. These unique hybrid mRNAs were predicted to be consequential for the hybrids’ health, and thus represented a malfunction in the mechanisms that regulate splicing. These results improve our understanding of the genetic regulation of alternative splicing and how alternative splice forms evolve. Our findings may lead to further inquiries about how aberrant splicing promotes the formation of new species in nature.


Author(s):  
Rachel Ablow

The nineteenth century introduced developments in science and medicine that made the eradication of pain conceivable for the first time. This new understanding of pain brought with it a complex set of moral and philosophical dilemmas. If pain serves no obvious purpose, how do we reconcile its existence with a well-ordered universe? Examining how writers of the day engaged with such questions, this book offers a compelling new literary and philosophical history of modern pain. The book provides close readings of novelists Charlotte Brontë and Thomas Hardy and political and natural philosophers John Stuart Mill, Harriet Martineau, and Charles Darwin, as well as a variety of medical, scientific, and popular writers of the Victorian age. The book explores how discussions of pain served as investigations into the status of persons and the nature and parameters of social life. No longer conceivable as divine trial or punishment, pain in the nineteenth century came to seem instead like a historical accident suggesting little or nothing about the individual who suffers. A landmark study of Victorian literature and the history of pain, the book shows how these writers came to see pain as a social as well as a personal problem. Rather than simply self-evident to the sufferer and unknowable to anyone else, pain was also understood to be produced between persons—and even, perhaps, by the fictions they read.


2020 ◽  
Vol 21 (1) ◽  
pp. 33-43 ◽  
Author(s):  
Prasuja Rokkam ◽  
Shailender Gugalavath ◽  
Deepak Kakara Gift Kumar ◽  
Rahul Kumar Vempati ◽  
Rama Rao Malla

Glioma-associated oncogene homolog 1 (GLI1) is reported as an amplified gene in human glioblastoma cells. It is a krupple like transcription factor, belonging to the zinc finger family. The basic function of GLI1 is normal neural development at various stages of human. The GLI1 gene was first mapped on the chromosome sub-bands 12q13.3-14.1. Further, single nucleotide polymorphism is mostly observed in translating a region of 5’ and 3’- UTR of GLI1 gene in addition to two post-transcriptional splice variants, GLIΔN and tGLI. Additionally, it also regulates a plethora of gene which mediates crucial cellular processes like proliferation, differentiation, oncogenesis, EMT, and metastasis. It also regulates tumor tolerance, chemoresistance, and radioresistance. Aberrant expression of GLI1 predicts the poor survival of breast cancer patients. GLI1 is an essential mediator of the SHH signaling pathway regulating self-renewal of stem cells, angiogenesis, and expression of FOXS1, CYR61. GLI1 mediated HH pathway can induce apoptosis. Hence, GLI1 can be a future diagnostic, prognostic marker, and as well as a potent target of therapeutics in breast cancer.


Author(s):  
David Willetts

Universities have a crucial role in the modern world. In England, entrance to universities is by nation-wide competition which means English universities have an exceptional influence on schools--a striking theme of the book. This important book first investigates the university as an institution and then tracks the individual on their journey to and through university. In A University Education, David Willetts presents a compelling case for the ongoing importance of the university, both as one of the great institutions of modern society and as a transformational experience for the individual. The book also makes illuminating comparisons with higher education in other countries, especially the US and Germany. Drawing on his experience as UK Minister for Universities and Science from 2010 to 2014, the author offers a powerful account of the value of higher education and the case for more expansion. He covers controversial issues in which he was involved from access for disadvantaged students to the introduction of L9,000 fees. The final section addresses some of the big questions for the future, such as the the relationship between universities and business, especially in promoting innovation.. He argues that the two great contemporary trends of globalisation and technological innovation will both change the university significantly. This is an authoritative account of English universities setting them for the first time in their new legal and regulatory framework.


Author(s):  
Dominic Scott

This chapter presents a reading of Plato’s Republic. The Republic is among Plato’s most complex works. From its title, the first-time reader will expect a dialogue about political theory, yet the work starts from the perspective of the individual, coming to focus on the question of how, if at all, justice contributes to an agent’s happiness. Only after this question has been fully set out does the work evolve into an investigation of politics—of the ideal state and of the institutions that sustain it, especially those having to do with education. But the interest in individual justice and happiness is never left behind. Rather, the work weaves in and out of the two perspectives, individual and political, right through to its conclusion. All this may leave one wondering about the unity of the work. The chapter shows that, despite the enormous range of topics discussed, the Republic fits together as a coherent whole.


2021 ◽  
Author(s):  
Xuhua Mo ◽  
Tobias A. M. Gulder

Over 30 biosynthetic gene clusters for natural tetramate have been identified. This highlight reviews the biosynthetic strategies for formation of tetramic acid unit for the first time, discussing the individual molecular mechanism in detail.


2021 ◽  
Vol 7 (3) ◽  
pp. 38
Author(s):  
Alexandra Korotaeva ◽  
Danzan Mansorunov ◽  
Natalya Apanovich ◽  
Anna Kuzevanova ◽  
Alexander Karpukhin

Neuroendocrine neoplasms (NEN) are infrequent malignant tumors of a neuroendocrine nature that arise in various organs. They occur most frequently in the lungs, intestines, stomach and pancreas. Molecular diagnostics and prognosis of NEN development are highly relevant. The role of clinical biomarkers can be played by microRNAs (miRNAs). This work is devoted to the analysis of data on miRNA expression in NENs. For the first time, a search for specificity or a community of their functional characteristics in different types of NEN was carried out. Their properties as biomarkers were also analyzed. To date, more than 100 miRNAs have been characterized as differentially expressed and significant for the development of NEN tumors. Only about 10% of the studied miRNAs are expressed in several types of NEN; differential expression of the remaining 90% was found only in tumors of specific localizations. A significant number of miRNAs have been identified as potential biomarkers. However, only a few miRNAs have values that characterized their quality as markers. The analysis demonstrates the predominant specific expression of miRNA in each studied type of NEN. This indicates that miRNA’s functional features are predominantly influenced by the tissue in which they are formed.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2503
Author(s):  
Chiara Di Mauro ◽  
Aratz Genua ◽  
Alice Mija

In an attempt to prepare sustainable epoxy thermosets, this study introduces for the first time the idea to use antagonist structures (aromatic/aliphatic) or functionalities (acid/amine) as hardeners to produce reprocessable resins based on epoxidized camelina oil (ECMO). Two kinds of mixtures were tested: one combines aromatic/aliphatic dicarboxylic acids: 2,2′-dithiodibenzoic acid (DTBA) and 3,3′-dithiodipropionic acid (DTDA); another is the combination of two aromatic structures with acid/amine functionality: DTBA and 4-aminophenyl disulfide (4-AFD). DSC and FT-IR analyses were used as methods to analyze the curing reaction of ECMO with the hardeners. It was found that the thermosets obtained with the dual crosslinked mechanism needed reduced curing temperatures and reprocessing protocols compared to the individual crosslinked thermosets. Thanks to the contribution of disulfide bonds in the network topology, the obtained thermosets showed recycling ability. The final thermomechanical properties of the virgin and mechanical reprocessed materials were analyzed by DMA and TGA. The obtained thermosets range from elastomeric to rigid materials. As an example, the ECMO/DTBA704-AFD30 virgin or reprocessed thermosets have tan δ values reaching 82–83 °C. The study also investigates the chemical recycling and the solvent resistance of these vitrimer-like materials.


Sign in / Sign up

Export Citation Format

Share Document