scholarly journals Combined PARP Inhibition and Immune Checkpoint Therapy in Solid Tumors

Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1502 ◽  
Author(s):  
Florent Peyraud ◽  
Antoine Italiano

Genomic instability is a hallmark of cancer related to DNA damage response (DDR) deficiencies, offering vulnerabilities for targeted treatment. Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) interfere with the efficient repair of DNA damage, particularly in tumors with existing defects in DNA repair, and induce synthetic lethality. PARPi are active across a range of tumor types harboring BRCA mutations and also BRCA-negative cancers, such as ovarian, breast or prostate cancers with homologous recombination deficiencies (HRD). Depending on immune contexture, immune checkpoint inhibitors (ICIs), such as anti-PD1/PD-L1 and anti-CTLA-4, elicit potent antitumor effects and have been approved in various cancers types. Although major breakthroughs have been performed with either PARPi or ICIs alone in multiple cancers, primary or acquired resistance often leads to tumor escape. PARPi-mediated unrepaired DNA damages modulate the tumor immune microenvironment by a range of molecular and cellular mechanisms, such as increasing genomic instability, immune pathway activation, and PD-L1 expression on cancer cells, which might promote responsiveness to ICIs. In this context, PARPi and ICIs represent a rational combination. In this review, we summarize the basic and translational biology supporting the combined strategy. We also detail preclinical results and early data of ongoing clinical trials indicating the synergistic effect of PARPi and ICIs. Moreover, we discuss the limitations and the future direction of the combination.

Author(s):  
Timothy A. Yap ◽  
Ruth Plummer ◽  
Nilofer S. Azad ◽  
Thomas Helleday

Cancer-specific DNA repair defects are abundant in malignant tissue and present an opportunity to capitalize on these aberrations for therapeutic benefit. Early preclinical data demonstrated the concept of synthetic lethality between BRCA genetic defects and pharmacologic PARP inhibition, suggesting that there may be monotherapy activity with this class of agents and supporting the early trial testing of this molecularly driven approach. Although the first foray into the clinic for PARP inhibitors was in combination with DNA-damaging cytotoxic agents, clinical development was limited by the more-than-additive toxicity, in particular dose-limiting myelosuppression. As more tolerable single agents, PARP inhibitors are now approved for the treatment of ovarian cancer in different settings and BRCA-mutant breast cancers. Beyond PARP inhibitors, there is now a large armamentarium of potent and relatively selective inhibitors in clinical trial testing against key targets involved in the DNA damage response (DDR), including ATR, ATM, CHK1/2, WEE1, and DNA-PK. These agents are being developed for patients with molecularly selected tumors and in rational combinations with other molecularly targeted agents and immune checkpoint inhibitors. We detail the clinical progress made in the development of PARP inhibitors, review rational combinations, and discuss the development of emerging inhibitors against novel DDR targets, including DNA repair proteins, DNA damage signaling, and DNA metabolism.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 678 ◽  
Author(s):  
Adrien Procureur ◽  
Audrey Simonaggio ◽  
Jean-Emmanuel Bibault ◽  
Stéphane Oudard ◽  
Yann-Alexandre Vano

The immunogenic cell death (ICD) is defined as a regulated cell death able to induce an adaptive immunity. It depends on different parameters including sufficient antigenicity, adjuvanticity and favorable microenvironment conditions. Radiation therapy (RT), a pillar of modern cancer treatment, is being used in many tumor types in curative, (neo) adjuvant, as well as metastatic settings. The anti-tumor effects of RT have been traditionally attributed to the mitotic cell death resulting from the DNA damages triggered by the release of reactive oxygen species. Recent evidence suggests that RT may also exert its anti-tumor effect by recruiting tumor-specific immunity. RT is able to induce the release of tumor antigens, to act as an immune adjuvant and thus to synergize with the anti-tumor immunity. The advent of new efficient immunotherapeutic agents, such as immune checkpoint inhibitors (ICI), in multiple tumor types sheds new light on the opportunity of combining RT and ICI. Here, we will describe the biological and radiobiological rationale of the RT-induced ICD. We will then focus on the interest to combine RT and ICI, from bench to bedside, and summarize the clinical data existing with this combination. Finally, RT technical adaptations to optimize the ICD induction will be discussed.


2021 ◽  
Vol 22 (16) ◽  
pp. 8910
Author(s):  
Masatsugu Miyashita ◽  
Teruki Shimizu ◽  
Eishi Ashihara ◽  
Osamu Ukimura

Human γδ T cells show potent cytotoxicity against various types of cancer cells in a major histocompatibility complex unrestricted manner. Phosphoantigens and nitrogen-containing bisphosphonates (N-bis) stimulate γδ T cells via interaction between the γδ T cell receptor (TCR) and butyrophilin subfamily 3 member A1 (BTN3A1) expressed on target cells. γδ T cell immunotherapy is classified as either in vivo or ex vivo according to the method of activation. Immunotherapy with activated γδ T cells is well tolerated; however, the clinical benefits are unsatisfactory. Therefore, the antitumor effects need to be increased. Administration of γδ T cells into local cavities might improve antitumor effects by increasing the effector-to-target cell ratio. Some anticancer and molecularly targeted agents increase the cytotoxicity of γδ T cells via mechanisms involving natural killer group 2 member D (NKG2D)-mediated recognition of target cells. Both the tumor microenvironment and cancer stem cells exert immunosuppressive effects via mechanisms that include inhibitory immune checkpoint molecules. Therefore, co-immunotherapy with γδ T cells plus immune checkpoint inhibitors is a strategy that may improve cytotoxicity. The use of a bispecific antibody and chimeric antigen receptor might be effective to overcome current therapeutic limitations. Such strategies should be tested in a clinical research setting.


Immunotherapy ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1205-1213
Author(s):  
Pauline Rochefort ◽  
Françoise Desseigne ◽  
Valérie Bonadona ◽  
Sophie Dussart ◽  
Clélia Coutzac ◽  
...  

Faithful DNA replication is necessary to maintain genome stability and implicates a complex network with several pathways depending on DNA damage type: homologous repair, nonhomologous end joining, base excision repair, nucleotide excision repair and mismatch repair. Alteration in components of DNA repair machinery led to DNA damage accumulation and potentially carcinogenesis. Preclinical data suggest sensitivity to immune checkpoint inhibitors in tumors with DNA repair deficiency. Here, we review clinical studies that explored the use of immune checkpoint inhibitor in patient harboring tumor with DNA repair deficiency.


2020 ◽  
Author(s):  
Swarna Nalluru ◽  
Paramrajan Piranavan ◽  
Anvesh Narimiti ◽  
Ahmad D. Siddiqui ◽  
George M. Abraham

Abstract BACKGROUNDAlong with antitumor effects, Immune Checkpoint Inhibitors (ICPI) have shown great potential in treating chronic infections such as HIV, Hepatitis B and malaria, in ex-vivo studies. However, several case reports and case series have suggested an increased infection risk in cancer patients. The purpose of our study was to assess the risk of infections in cancer patients receiving ICPI. We also attempted to evaluate the role of a multidisciplinary approach (Oncology and Infectious disease specialists) and the cost associated with treatment. METHODS:Records on all cancer patients over age ≥18 years old who had received at least one dose of ICPI between 2015 to 2018 at a major community teaching hospital in the central Massachusetts region were reviewed. Several risk factors associated with infection were identified. A two-tailed, unpaired t-test was used to analyze the association between risk factors and infection. We calculated the cumulative length of stay (LOS) and cost per admission with a multidisciplinary vs. non-multidisciplinary approach. The calculated total average cost per admission was compared to a matched population (without an oncologic diagnosis) admitted with infections similar to that in our study, to compare the economic burden. RESULTSRetrospective chart review of 169 cancer patients receiving ICPI showed sixty-two episodes of infection in thirty-seven (21.8%) patients and a mortality rate of 3.5% due to associated complications. Risk factors like COPD, prior chemotherapy and steroid use were significantly associated (P<0.05) with infections. Further sub-group analysis showed increase in cumulative LOS from 5.9 to 8.1 days but approximately similar average cost per admission ($52,047 vs. $54,510) with non-multidisciplinary vs. multidisciplinary approach. The calculated total cost per admission during an episode of infection in this cohort of patients was $35,484; three-fold higher when matched to similar infections in a general non-oncologic population ($11,527). CONCLUSIONSA significant incidence of infections and associated health care resource utilization continues to prevail in cancer patients despite the utility of ICPI. A multidisciplinary approach to manage the infections and associated complications in cancer patients receiving ICPI increased the cumulative LOS but not the average cost per admission.


Gut ◽  
2020 ◽  
pp. gutjnl-2019-319970 ◽  
Author(s):  
Johann Gout ◽  
Lukas Perkhofer ◽  
Mareen Morawe ◽  
Frank Arnold ◽  
Michaela Ihle ◽  
...  

ObjectiveATM serine/threonine kinase (ATM) is the most frequently mutated DNA damage response gene, involved in homologous recombination (HR), in pancreatic ductal adenocarcinoma (PDAC).DesignCombinational synergy screening was performed to endeavour a genotype-tailored targeted therapy.ResultsSynergy was found on inhibition of PARP, ATR and DNA-PKcs (PAD) leading to synthetic lethality in ATM-deficient murine and human PDAC. Mechanistically, PAD-induced PARP trapping, replication fork stalling and mitosis defects leading to P53-mediated apoptosis. Most importantly, chemical inhibition of ATM sensitises human PDAC cells toward PAD with long-term tumour control in vivo. Finally, we anticipated and elucidated PARP inhibitor resistance within the ATM-null background via whole exome sequencing. Arising cells were aneuploid, underwent epithelial-mesenchymal-transition and acquired multidrug resistance (MDR) due to upregulation of drug transporters and a bypass within the DNA repair machinery. These functional observations were mirrored in copy number variations affecting a region on chromosome 5 comprising several of the upregulated MDR genes. Using these findings, we ultimately propose alternative strategies to overcome the resistance.ConclusionAnalysis of the molecular susceptibilities triggered by ATM deficiency in PDAC allow elaboration of an efficient mutation-specific combinational therapeutic approach that can be also implemented in a genotype-independent manner by ATM inhibition.


2019 ◽  
Vol 20 (16) ◽  
pp. 3934 ◽  
Author(s):  
Gilda Varricchi ◽  
Stefania Loffredo ◽  
Giancarlo Marone ◽  
Luca Modestino ◽  
Poupak Fallahi ◽  
...  

Immune cells play critical roles in tumor prevention as well as initiation and progression. However, immune-resistant cancer cells can evade the immune system and proceed to form tumors. The normal microenvironment (immune cells, fibroblasts, blood and lymphatic vessels, and interstitial extracellular matrix (ECM)) maintains tissue homeostasis and prevents tumor initiation. Inflammatory mediators, reactive oxygen species, cytokines, and chemokines from an altered microenvironment promote tumor growth. During the last decade, thyroid cancer, the most frequent cancer of the endocrine system, has emerged as the fifth most incident cancer in the United States (USA), and its incidence is steadily growing. Inflammation has long been associated with thyroid cancer, raising critical questions about the role of immune cells in its pathogenesis. A plethora of immune cells and their mediators are present in the thyroid cancer ecosystem. Monoclonal antibodies (mAbs) targeting immune checkpoints, such as mAbs anti-cytotoxic T lymphocyte antigen 4 (anti-CTLA-4) and anti-programmed cell death protein-1/programmed cell death ligand-1 (anti-PD-1/PD-L1), have revolutionized the treatment of many malignancies, but they induce thyroid dysfunction in up to 10% of patients, presumably by enhancing autoimmunity. Combination strategies involving immune checkpoint inhibitors (ICIs) with tyrosine kinase (TK) or serine/threonine protein kinase B-raf (BRAF) inhibitors are showing considerable promise in the treatment of advanced thyroid cancer. This review illustrates how different immune cells contribute to thyroid cancer development and the rationale for the antitumor effects of ICIs in combination with BRAF/TK inhibitors.


Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4261
Author(s):  
Paula Martínez-Sanz ◽  
Arjan J. Hoogendijk ◽  
Paul J. J. H. Verkuijlen ◽  
Karin Schornagel ◽  
Robin van Bruggen ◽  
...  

High-risk neuroblastoma, especially after recurrence, still has a very low survival rate. Immune checkpoint inhibitors targeting T cells have shown remarkable clinical efficacy in adult solid tumors, but their effects in pediatric cancers have been limited so far. On the other hand, targeting myeloid immune checkpoints, such as CD47-SIPRα, provide the opportunity to enhance antitumor effects of myeloid cells, including that of neutrophils, especially in the presence of cancer-opsonizing antibodies. Disialoganglioside (GD2)-expressing neuroblastoma cells targeted with anti-GD2 antibody dinutuximab are in part eradicated by neutrophils, as they recognize and bind the antibody targeted tumor cells through their Fc receptors. Therapeutic targeting of the innate immune checkpoint CD47-SIRPα has been shown to promote the potential of neutrophils as cytotoxic cells in different solid tumor indications using different cancer-targeting antibodies. Here, we demonstrate that the capacity of neutrophils to kill dinutuximab-opsonized neuroblastoma cells is also controlled by the CD47-SIRPα axis and can be further enhanced by antagonizing CD47-SIRPα interactions. In particular, CD47-SIRPa checkpoint inhibition enhanced neutrophil-mediated ADCC of dinutuximab-opsonized adrenergic neuroblastoma cells, whereas mesenchymal neuroblastoma cells may evade immune recognition by a reduction of GD2 expression. These findings provide a rational basis for targeting CD47-SIRPα interactions to potentiate dinutuximab responsiveness in neuroblastomas with adrenergic phenotype.


2021 ◽  
Vol 13 (581) ◽  
pp. eabd8636
Author(s):  
Jennifer A. Lo ◽  
Masayoshi Kawakubo ◽  
Vikram R. Juneja ◽  
Mack Y. Su ◽  
Tal H. Erlich ◽  
...  

Although immune checkpoint inhibitors (ICIs), such as anti–programmed cell death protein–1 (PD-1), can deliver durable antitumor effects, most patients with cancer fail to respond. Recent studies suggest that ICI efficacy correlates with a higher load of tumor-specific neoantigens and development of vitiligo in patients with melanoma. Here, we report that patients with low melanoma neoantigen burdens who responded to ICI had tumors with higher expression of pigmentation-related genes. Moreover, expansion of peripheral blood CD8+ T cell populations specific for melanocyte antigens was observed only in patients who responded to anti–PD-1 therapy, suggesting that ICI can promote breakdown of tolerance toward tumor-lineage self-antigens. In a mouse model of poorly immunogenic melanomas, spreading of epitope recognition toward wild-type melanocyte antigens was associated with markedly improved anti–PD-1 efficacy in two independent approaches: introduction of neoantigens by ultraviolet (UV) B radiation mutagenesis or the therapeutic combination of ablative fractional photothermolysis plus imiquimod. Complete responses against UV mutation-bearing tumors after anti–PD-1 resulted in protection from subsequent engraftment of melanomas lacking any shared neoantigens, as well as pancreatic adenocarcinomas forcibly overexpressing melanocyte-lineage antigens. Our data demonstrate that somatic mutations are sufficient to provoke strong antitumor responses after checkpoint blockade, but long-term responses are not restricted to these putative neoantigens. Epitope spreading toward T cell recognition of wild-type tumor-lineage self-antigens represents a common pathway for successful response to ICI, which can be evoked in neoantigen-deficient tumors by combination therapy with ablative fractional photothermolysis and imiquimod.


Sign in / Sign up

Export Citation Format

Share Document