scholarly journals Fecal microRNAs as Innovative Biomarkers of Intestinal Diseases and Effective Players in Host-Microbiome Interactions

Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2174 ◽  
Author(s):  
Meysam Sarshar ◽  
Daniela Scribano ◽  
Cecilia Ambrosi ◽  
Anna Teresa Palamara ◽  
Andrea Masotti

Over the past decade, short non-coding microRNAs (miRNAs), including circulating and fecal miRNAs have emerged as important modulators of various cellular processes by regulating the expression of target genes. Recent studies revealed the role of miRNAs as powerful biomarkers in disease diagnosis and for the development of innovative therapeutic applications in several human conditions, including intestinal diseases. In this review, we explored the literature and summarized the role of identified dysregulated fecal miRNAs in intestinal diseases, with particular focus on colorectal cancer (CRC) and celiac disease (CD). The aim of this review is to highlight one fascinating aspect of fecal miRNA function related to gut microbiota shaping and bacterial metabolism influencing. The role of miRNAs as “messenger” molecules for inter kingdom communications will be analyzed to highlight their role in the complex host-bacteria interactions. Moreover, whether fecal miRNAs could open up new perspectives to develop novel suitable biomarkers for disease detection and innovative therapeutic approaches to restore microbiota balance will be discussed.

2020 ◽  
Vol 26 ◽  
Author(s):  
Yini Ma ◽  
Xiu Cao ◽  
Guojuan Shi ◽  
Tianlu Shi

: MicroRNAs (miRNAs) play a vital role in the onset and development of many diseases, including cancers. Emerging evidence shows that numerous miRNAs have the potential to be used as diagnostic biomarkers for cancers, and miRNA-based therapy may be a promising therapy for the treatment of malignant neoplasm. MicroRNA-145 (miR-145) has been considered to play certain roles in various cellular processes, such as proliferation, differentiation and apoptosis, via modulating expression of direct target genes. Recent reports show that miR-145 participates in the progression of digestive system cancers, and plays crucial and novel roles for cancer treatment. In this review, we summarize the recent knowledge concerning the function of miR-145 and its direct targets in digestive system cancers. We discuss the potential role of miR-145 as valuable biomarkers for digestive system cancers and how miR-145 regulates these digestive system cancers via different targets to explore the potential strategy of targeting miR-145.


2021 ◽  
Vol 22 (14) ◽  
pp. 7429
Author(s):  
Matthew Martin ◽  
Mengyao Sun ◽  
Aishat Motolani ◽  
Tao Lu

Over the last several decades, colorectal cancer (CRC) has been one of the most prevalent cancers. While significant progress has been made in both diagnostic screening and therapeutic approaches, a large knowledge gap still remains regarding the early identification and treatment of CRC. Specifically, identification of CRC biomarkers that can help with the creation of targeted therapies as well as increasing the ability for clinicians to predict the biological response of a patient to therapeutics, is of particular importance. This review provides an overview of CRC and its progression stages, as well as the basic types of CRC biomarkers. We then lay out the synopsis of signaling pathways related to CRC, and further highlight the pivotal and multifaceted role of nuclear factor (NF) κB signaling in CRC. Particularly, we bring forth knowledge regarding the tumor microenvironment (TME) in CRC, and its complex interaction with cancer cells. We also provide examples of NF-κB signaling-related CRC biomarkers, and ongoing efforts made at targeting NF-κB signaling in CRC treatment. We conclude and anticipate that with more emerging novel regulators of the NF-κB pathway being discovered, together with their in-depth characterization and the integration of large groups of genomic, transcriptomic and proteomic data, the day of successful development of more ideal NF-κB inhibitors is fast approaching.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 694 ◽  
Author(s):  
Sara Silvia Violanti ◽  
Ilaria Bononi ◽  
Carla Enrica Gallenga ◽  
Fernanda Martini ◽  
Mauro Tognon ◽  
...  

Uveal melanoma (UM), which is the most common cancer of the eye, was investigated in recent years by many teams in the field of biomedical sciences and eye clinicians. New knowledge was acquired on molecular pathways found to be dysregulated during the multistep process of oncogenesis, whereas novel therapeutic approaches gave significant results in the clinical applications. Uveal melanoma-affected patients greatly benefited from recent advances of the research in this eye cancer. Tumour biology, genetics, epigenetics and immunology contributed significantly in elucidating the role of different genes and related pathways during uveal melanoma onset/progression and UM treatments. Indeed, these investigations allowed identification of new target genes and to develop new therapeutic strategies/compounds to cure this aggressive melanoma of the eye. Unfortunately, the advances reported in the treatment of cutaneous melanoma have not produced analogous benefits in metastatic uveal melanoma. Nowadays, no systemic adjuvant therapy has been shown to improve overall survival or reduce the risk of metastasis. However, the increasing knowledge of this disease, and the encouraging results seen in clinical trials, offer promise for future effective therapies. Herein, different pathways/genes involved in uveal melanoma onset/progression were taken into consideration, together with novel therapeutic approaches.


Scientifica ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Madhav Bhatia

Hydrogen sulfide (H2S) is a well-known toxic gas that is synthesized in the human body from the amino acids cystathionine, homocysteine, and cysteine by the action of at least two distinct enzymes: cystathionine-γ-lyase and cystathionine-β-synthase. In the past few years, H2S has emerged as a novel and increasingly important biological mediator. Imbalances in H2S have also been shown to be associated with various disease conditions. However, defining the precise pathophysiology of H2S is proving to be a complex challenge. Recent research in our laboratory has shown H2S as a novel mediator of inflammation and work in several groups worldwide is currently focused on determining the role of H2S in inflammation. H2S has been implicated in different inflammatory conditions, such as acute pancreatitis, sepsis, joint inflammation, and chronic obstructive pulmonary disease (COPD). Active research on the role of H2S in inflammation will unravel the pathophysiology of its actions in inflammatory conditions and may help develop novel therapeutic approaches for several, as yet incurable, disease conditions.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 887
Author(s):  
Josephine Trichka ◽  
Wen-Quan Zou

The process of neuroinflammation contributes to the pathogenic mechanism of many neurodegenerative diseases. The deleterious attributes of neuroinflammation involve aberrant and uncontrolled activation of glia, which can result in damage to proximal brain parenchyma. Failure to distinguish self from non-self, as well as leukocyte reaction to aggregation and accumulation of proteins in the CNS, are the primary mechanisms by which neuroinflammation is initiated. While processes local to the CNS may instigate neurodegenerative disease, the existence or dysregulation of systemic homeostasis can also serve to improve or worsen CNS pathologies, respectively. One fundamental component of systemic homeostasis is the gut microbiota, which communicates with the CNS via microbial metabolite production, the peripheral nervous system, and regulation of tryptophan metabolism. Over the past 10–15 years, research focused on the microbiota–gut–brain axis has culminated in the discovery that dysbiosis, or an imbalance between commensal and pathogenic gut bacteria, can promote CNS pathologies. Conversely, a properly regulated and well-balanced microbiome supports CNS homeostasis and reduces the incidence and extent of pathogenic neuroinflammation. This review will discuss the role of the gut microbiota in exacerbating or alleviating neuroinflammation in neurodegenerative diseases, and potential microbiota-based therapeutic approaches to reduce pathology in diseased states.


2019 ◽  
Vol 19 (23) ◽  
pp. 2098-2113 ◽  
Author(s):  
Fengqian Chen ◽  
Martin P. Alphonse ◽  
Yan Liu ◽  
Qi Liu

: Over the past decades, designing therapeutic strategies to target KRAS-mutant cancers, which is one of the most frequent mutant oncogenes among all cancer types, have proven unsuccessful regardless of many concerted attempts. There are key challenges for KRAS-mutant anticancer therapy, as the complex cellular processes involved in KRAS signaling has present. Herein, we highlight the emerging therapeutic approaches for inhibiting KRAS signaling and blocking KRAS functions, in hope to serve as a more effective guideline for future development of therapeutics.


Author(s):  
Haitao Mei ◽  
Yugang Wen

: Colorectal cancer (CRC) is the third most common cancer worldwide, with high morbidity and mortality rates. The diagnosis and treatment of CRC have the most significant value for disease-free survival. Early diagnosis and early surgical resection are generally considered to be the most effective ways to reduce CRC mortality. In the past few years, many researchers have focused on the role of microRNAs in different tumors, making the functions of microRNAs gradually clear. The present study reviews the role of microRNAs in the diagnosis and treatment of colorectal cancer. Compared with the usual diagnosis methods and biomarker, circulating microRNAs can be promising new effective biomarkers for CRCdiagnosis and treatment.


2021 ◽  
Vol 21 ◽  
Author(s):  
Narges Dastmalchi ◽  
Reza Safaralizadeh ◽  
Shahram Teimourian

: Colorectal cancer (CRC) is one of the main causes of malignancy-related mortality worldwide. It was well-identified that microRNAs (miRNAs) decisively participate in cellular biological pathways; in a way that their deregulated expression causes CRC progression. miRNAs can control the translation and degradation of mRNAs by binding to various molecular targets involved in different biological processes, including growth, apoptosis, cell cycle, autophagy, angiogenesis, metastasis, etc. The functions of these dysregulated miRNAs may be either oncogenic or tumor-suppressive. Therefore, these miRNAs can be contributed to prognostic, diagnostic, and therapeutic approaches in CRC. In this study, we reviewed the tumor-suppressive and oncogenic functions of miRNAs in CRC and assessed their molecular activities in CRC development. However, further investigation for the involvement of dysregulated miRNAs in CRC progression is required.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Kalupahana Irushi Pamodya Liyanage ◽  
Gamage Upeksha Ganegoda

Diseases resulting from alterations in gene expressions through mutations in the genes or through changes in the gene expression regulation could be identified through the analysis of RNA expressions. ncRNAs play a significant role in regulation of the gene expression by controlling the expression levels of the coding RNAs and other cellular processes. Discoveries have shown that the human genome is encoded with sequences responsible for the transcription of thousands of ncRNAs. Even though the studies conducted on ncRNAs are still at initial stages, facts established so far display biomarkers that confirm their relationship with certain diseases such as cancers, cardiovascular diseases, and insulin resistance. These studies have been facilitated with high throughput modern sequencing techniques such as microarrays and RNA sequencing. The data obtained through the above analysis are processed with the aid of existing databases, to deduce conclusions on different diagnostic biomarkers and therapeutic targets for specific diseases. This review focuses on the association of ncRNAs in disease prediction, focusing mainly on cardiovascular diseases and disorders caused by insulin resistance. The report also analyzes regulatory functions of ncRNAs and novel approaches used in disease therapeutics.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaodan Bai ◽  
Shengyu Hua ◽  
Junping Zhang ◽  
Shixin Xu

An increasing number of research studies over recent years have focused on the function of microRNA (miRNA) molecules which have unique characteristics in terms of structure and function. They represent a class of endogenous noncoding single-strand small molecules. An abundance of miRNA clusters has been found in the genomes of various organisms often located in a polycistron. The miR-17-92 family is among the most famous miRNAs and has been identified as an oncogene. The functions of this cluster, together with the seven individual molecules that it comprises, are most related to cancers, so it would not be surprising that they are considered to have involvement in the development of tumors. The miR-17-92 cluster is therefore expected not only to be a tumor marker, but also to perform an important role in the early diagnosis of those diseases and possibly also be a target for tumor biotherapy. The miR-17-92 cluster affects the development of disease by regulating many related cellular processes and multiple target genes. Interestingly, it also has important roles that cannot be ignored in disease of the nervous system and circulation and modulates the growth and development of bone. Therefore, it provides new opportunities for disease prevention, clinical diagnosis, prognosis, and targeted therapy. Here we review the role of the miR-17-92 cluster that has received little attention in relation to neurological diseases, cardiac diseases, and the development of bone and tumors.


Sign in / Sign up

Export Citation Format

Share Document