scholarly journals Transcriptomics-Based Drug Repurposing Approach Identifies Novel Drugs against Sorafenib-Resistant Hepatocellular Carcinoma

Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2730
Author(s):  
Kelly Regan-Fendt ◽  
Ding Li ◽  
Ryan Reyes ◽  
Lianbo Yu ◽  
Nissar A. Wani ◽  
...  

Objective: Hepatocellular carcinoma (HCC) is frequently diagnosed in patients with late-stage disease who are ineligible for curative surgical therapies. The majority of patients become resistant to sorafenib, the only approved first-line therapy for advanced cancer, underscoring the need for newer, more effective drugs. The purpose of this study is to expedite identification of novel drugs against sorafenib resistant (SR)-HCC. Methods: We employed a transcriptomics-based drug repurposing method termed connectivity mapping using gene signatures from in vitro-derived SR Huh7 HCC cells. For proof of concept validation, we focused on drugs that were FDA-approved or under clinical investigation and prioritized two anti-neoplastic agents (dasatinib and fostamatinib) with targets associated with HCC. We also prospectively validated predicted gene expression changes in drug-treated SR Huh7 cells as well as identified and validated the targets of Fostamatinib in HCC. Results: Dasatinib specifically reduced the viability of SR-HCC cells that correlated with up-regulated activity of SRC family kinases, its targets, in our SR-HCC model. However, fostamatinib was able to inhibit both parental and SR HCC cells in vitro and in xenograft models. Ingenuity pathway analysis of fostamatinib gene expression signature from LINCS predicted JAK/STAT, PI3K/AKT, ERK/MAPK pathways as potential targets of fostamatinib that were validated by Western blot analysis. Fostamatinib treatment reversed the expression of genes that were deregulated in SR HCC. Conclusion: We provide proof of concept evidence for the validity of this drug repurposing approach for SR-HCC with implications for personalized medicine.

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Junjie Xu ◽  
Lin Ji ◽  
Yuelong Liang ◽  
Zhe Wan ◽  
Wei Zheng ◽  
...  

AbstractSorafenib is the first-line chemotherapeutic therapy for advanced hepatocellular carcinoma (HCC). However, sorafenib resistance significantly limits its therapeutic efficacy, and the mechanisms underlying resistance have not been fully clarified. Here we report that a circular RNA, circRNA-SORE (a circular RNA upregulated in sorafenib-resistant HCC cells), plays a significant role in sorafenib resistance in HCC. We found that circRNA-SORE is upregulated in sorafenib-resistant HCC cells and depletion of circRNA-SORE substantially increases the cell-killing ability of sorafenib. Further studies revealed that circRNA-SORE binds the master oncogenic protein YBX1 in the cytoplasm, which prevents YBX1 nuclear interaction with the E3 ubiquitin ligase PRP19 and thus blocks PRP19-mediated YBX1 degradation. Moreover, our in vitro and in vivo results suggest that circRNA-SORE is transported by exosomes to spread sorafenib resistance among HCC cells. Using different HCC mouse models, we demonstrated that silencing circRNA-SORE by injection of siRNA could substantially overcome sorafenib resistance. Our study provides a proof-of-concept demonstration for a potential strategy to overcome sorafenib resistance in HCC patients by targeting circRNA-SORE or YBX1.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5624
Author(s):  
Matthis Desoteux ◽  
Corentin Louis ◽  
Kevin Bévant ◽  
Denise Glaise ◽  
Cédric Coulouarn

Hepatocellular carcinoma (HCC) is a deadly cancer worldwide as a result of a frequent late diagnosis which limits the therapeutic options. Tumor progression in HCC is closely correlated with the dedifferentiation of hepatocytes, the main parenchymal cells in the liver. Here, we hypothesized that the expression level of genes reflecting the differentiation status of tumor hepatocytes could be clinically relevant in defining subsets of patients with different clinical outcomes. To test this hypothesis, an integrative transcriptomics approach was used to stratify a cohort of 139 HCC patients based on a gene expression signature established in vitro in the HepaRG cell line using well-controlled culture conditions recapitulating tumor hepatocyte differentiation. The HepaRG model was first validated by identifying a robust gene expression signature associated with hepatocyte differentiation and liver metabolism. In addition, the signature was able to distinguish specific developmental stages in mice. More importantly, the signature identified a subset of human HCC associated with a poor prognosis and cancer stem cell features. By using an independent HCC dataset (TCGA consortium), a minimal subset of seven differentiation-related genes was shown to predict a reduced overall survival, not only in patients with HCC but also in other types of cancers (e.g., kidney, pancreas, skin). In conclusion, the study identified a minimal subset of seven genes reflecting the differentiation status of tumor hepatocytes and clinically relevant for predicting the prognosis of HCC patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kainan Zhang ◽  
Hui Liu ◽  
Mengsi Yu ◽  
Hui Zhao ◽  
Ning Yang ◽  
...  

The development of hepatocellular carcinoma (HCC) is a complex pathological process. Long intergenic non–protein-coding RNA 1667 (LINC01667, also known as MGC38584) plays an oncogenic role in several human cancers; however, its functional role in HCC tumorigenesis remains unknown. Here, we first evaluated the gene expression levels of LINC01667 in HCC using data from The Cancer Genome Atlas and Gene Expression Profiling Interactive Analysis (GEPIA) databases. We then elucidated the association between LINC01667 gene expression levels and the survival rates of patients with HCC. We detected the effect of LINC01667 on the malignant phenotypes (cell proliferation, migration, invasion and apoptosis etc.) and the MAPK and PI3K/AKT/mTOR signaling pathways of HepG2, SMMC-7721 and HUH7 cells. We also analyzed the sensitivity of HepG2, SMMC-7721 and HUH7 with different expression levels of LINC01667 to anti-HCC drugs in vitro. Based on data from the aforementioned databases and our experiments in vitro, we found that LINC01667 was overexpressed in HCC, and that patients with high LINC01667 levels had a remarkably poor overall survival rate. In addition, inhibition of LINC01667 expression suppressed the proliferation, migration and invasion of HepG2 and SMMC-7721 cells and promoted their apoptosis in vitro. In contrast, overexpression of LINC01667 promoted the proliferation, migration and invasion of HUH7 cells and suppressed their apoptosis in vitro. ChIRP-seq (chromatin isolation by RNA purification) showed that LINC01667 bound to MEG3, and downregulated the expression of MEG3. In addition, western blotting showed that LINC01667 could activate the NF-κB pathway to promote cancer progression. In conclusion, we report that LINC01667 is an important oncogene in HCC and may be used as a potential diagnostic and prognostic biomarker of HCC.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 112
Author(s):  
Jisoo Song ◽  
Jiyeon Ham ◽  
Taeyeon Hong ◽  
Gwonhwa Song ◽  
Whasun Lim

Fraxetin is a coumarin scaffold compound extracted from Fraxinus rhynchophylla. It has antioxidant, anti-inflammatory, hepatoprotective, and antifibrotic effects. Furthermore, fraxetin has anticancer effects in breast and lung cancer. We aimed to evaluate whether fraxetin has anticancer activity in hepatocellular carcinoma (HCC) cells and its underlying mechanism. We demonstrated the anticancer effects of fraxetin in the HCC cell lines Huh7 and Hep3B. We confirmed that fraxetin inhibited cell proliferation (42% ± 10% Huh7; 52% ± 7% Hep3B) by arresting the cell cycle and inducing apoptosis in both cell lines. Moreover, fraxetin increased reactive oxygen species production (221% ± 55% Huh7; 460% ± 73% Hep3B), depolarized the mitochondrial membranes (ΔΨm) (345% ± 160% Huh7; 462% ± 140% Hep3B), and disrupted calcium homeostasis in both HCC cell lines. Chelating calcium ions with BAPTA-AM restored proliferation in fraxetin-treated Huh7 cells but not in Hep3B cells. Fraxetin did not affect the phosphorylation of extracellular-signal-regulated kinase 1/2, whereas it decreased JNK and phosphoinositide 3-kinase signaling. Furthermore, fraxetin and mitogen-activated protein kinase pharmacological inhibitors had synergistic antiproliferative effects on HCC cells. Although our study was limited to in vitro data that require validation, we suggest that fraxetin is a potential therapeutic agent against HCC progression.


2021 ◽  
Author(s):  
Hezhi Wang ◽  
Xiaoxiao Wang ◽  
Xueshuai Ye ◽  
Yi Ju ◽  
Nana Cao ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and the adoptive immunotherapy of which is worth studying. CD133, a kind of cancer stem cell (CSC) antigen, together with glypican-3 (GPC3) have been proved to be highly expressed in HCC cells and both of them are used as targets to generate chimeric antigen receptor (CAR) T cells. But there are limitations like “on-target, off-tumor” toxicity, low transfection efficacy and weak antitumor ability in CAR T cells treatment.Methods: First we fused anti-CD133 and anti-GPC3 single chain Fragment variable (scFv) structures with intracellular domains, respectively. Using non-viral minicircle DNA (mcDNA) vectors to generate co-specific CAR T cells (CoG133-CAR T cells) against CD133 and GPC3 double-positive HCC cells. We exhibited the transduction efficiency of CoG133-CAR T cells and the antigen expression of tumor cell lines. Finally, the antitumor efficacy of CoG133-CAR T cells both in vitro and in vivo was detected. Results: GPC3-CAR and CD133-CAR were successfully prepared using non-viral mcDNA vectors to generate effector cells. For the GPC3 and CD133 double-positive HCC (Huh7) xenograft mice, co-specific CAR T cells possessed stronger tumor growth suppression compared to single-targeted CAR (GPC3-CAR and CD133-CAR) T cells which induced only one antigen-mediated signal pathway. The same results also occurred on the in vitro experiments including cytokine secretion, cytotoxicity and proliferation ability of CAR T cells. Vital organs from CoG133-CAR T cells and normal T cells respectively treated Huh7 xenograft mice were stained by hematoxylin and eosin (H&E), the images showed no difference. Conclusions: The mcDNA vectors loading CAR structures were transfected into T cells by electroporation without genetic mutation or mismatch. Huh7 is an HCC cell line with two antigens of GPC3 and CD133 highly expressed. The antitumor efficacy of co-specific CAR (CoG133-CAR) T cells against Huh7 cells is significantly enhanced. The joint design of two specific targets and non-viral vectors leads much more safety, also.


2021 ◽  
Author(s):  
Meisi Huo ◽  
Kangkang Yu ◽  
Yahui Zheng ◽  
Lu Liu ◽  
Hao Zhao ◽  
...  

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer mortality, metastasis accounts for most of the cases. Angiogenesis plays an important role in cancer metastasis, but how tumor cells affect the function of endothelial cells by dictating their miRNA expression remains largely unknown.Differentially expressed miRNAs (DEMs) were identified through dataset downloaded from the Gene Expression Omnibus (GEO) database and analyzed by GEO2R. We then use online tools to obtain potential targets of candidate microRNAs(miRNAs) and functional enrichment analysis,as well as the protein-protein interaction (PPI). Finally, the function of miR-302c-3p was validated through in vitro assay.In the current study, we found that HCC cells altered miRNAs expression profiles of human umbilical vein endothelial cells (HUVECs) and miR-302c-3p was the most downregulated miRNA in HUVECs when they were co-cultured with HCC-LM3 cells. Functional enrichment analysis of the candidate targets revealed that these genes were involved in epigenetic regulation of gene expression, in particular, histone methylation. In addition, PPI network demonstrated distinct roles of genes targeted by miR-302c-3p. Importantly, inhibition of angiogenesis, migration and permeability by the most downregulated miR-302c-3p in HUVECs was confirmed in vitro. These findings brought us novel insight into the regulation of angiogenesis by HCC cells and provided potential targets for the development of therapeutic strategies.


2020 ◽  
Vol 160 (11-12) ◽  
pp. 650-658
Author(s):  
Yichen Le ◽  
Yi He ◽  
Meirong Bai ◽  
Ying Wang ◽  
Jiaxue Wu ◽  
...  

Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Xie ◽  
Xiaofeng Hang ◽  
Wensheng Xu ◽  
Jing Gu ◽  
Yuanjing Zhang ◽  
...  

Abstract Background Most of the biological functions of circular RNAs (circRNAs) and the potential underlying mechanisms in hepatocellular carcinoma (HCC) have not yet been discovered. Methods In this study, using circRNA expression data from HCC tumor tissues and adjacent tissues from the Gene Expression Omnibus database, we identified out differentially expressed circRNAs and verified them by qRT-PCT. Functional experiments were performed to evaluate the effects of circFAM13B in HCC in vitro and in vivo. Results We found that circFAM13B was the most significantly differentially expressed circRNA in HCC tissue. Subsequently, in vitro and in vivo studies also demonstrated that circFAM13B promoted the proliferation of HCC. Further studies revealed that circFAM13B, a sponge of miR-212, is involved in the regulation of E2F5 gene expression by competitively binding to miR-212, inhibits the activation of the P53 signalling pathway, and promotes the proliferation of HCC cells. Conclusions Our findings revealed the mechanism underlying the regulatory role played by circFAM13B, miR-212 and E2F5 in HCC. This study provides a new theoretical basis and novel target for the clinical prevention and treatment of HCC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Immunohistochemical staining and qRT-PCR analysis were performed in human HCC sampels to study the clinical significance of KLF7, VPS35 and β-catenin. Results Firstly, KLF7 was highly expressed in human HCC samples and correlated with patients’ differentiation and metastasis status. KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Lastly, there was a positive correlation among KLF7, VPS35 and active-β-catenin in human HCC patients. Conclusion We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 151.2-152
Author(s):  
E. Pachera ◽  
G. Kania ◽  
A. Juengel ◽  
M. Calcagni ◽  
O. Distler

Background:Traditional preclinical approaches, such as two-dimensional cell culture and animal models, are often inadequate to mimic the pathophysiological features of complex diseases such as systemic sclerosis (SSc). Human specific targets, such as the recently described pro-fibrotic long non coding RNA (lncRNA) H19X1, are becoming increasingly relevant in preclinical research, creating the need of new strategies and tools in translational medicine. The employment of novel three-dimensional (3D) culture systems, where multiple cell types are included, is filling an important gap left by the traditional preclinical methods.Objectives:To develop an easy to produce 3D fibrotic skin microtissues model for translational proof of concept studies.Methods:Two thousand five hundred dermal fibroblasts isolated from skin of SSc patients were seeded in ultra-low attachment 96-well plates. Fibroblast were let to aggregate into spheres for 48h. Two thousand five hundred primary normal human keratinocytes were added to the culture and let to layer onto the fibroblast spheres for 72h. H19X silencing experiments were used as proof of concept studies. H19X silencing with antisense oligonucleotides or transfections with a scrambled control were performed in fibroblasts prior to the sphere formation for 24h. TGFβ (10 ng/ml) was added to microtissue to exacerbate the fibrotic phenotype. Haematoxylin eosin staining as well as immunohistochemistry staining for vimentin and cytokeratin 10 was performed. Skin microtissues were processed for RNA and protein isolation. Pro-collagen Iα1 and fibronectin were quantified in the supernatants with ELISA.Results:The microtissues presented a core of SSc fibroblast as revealed by vimentin staining and an external layer of keratinocytes as revealed by cytokeratin 10 staining, mimicking the human skin architecture. Gene expression analysis following TGFβ stimulation displayed induced expression of extracellular matrix gene COL1A1 (p=0.044) and the myofibroblast marker ACTA2 (p=0.018), indicating that the microtissues were able to develop a fibrotic response. Microtissues, where H19X was silenced, displayed reduced gene expression of COL1A1 and ACTA2 after TGFβ stimulation (COL1A1 p=0.007, ACTA2 p=0.045). Additionally, H19X silencing led to lower levels of αSMA protein expression (p=0.009) and pro-collagen1α1 secretion (p=0.039) in the supernatant of the microtissue cultures as revealed by Western Blot and ELISA, respectively. FN1 expression and fibronectin protein levels were not significantly reduced in the microtissues after H19X silencing.Conclusion:We were able to produce a 3D microtissue resembling skin architecture that can respond to fibrotic stimuli. Knockdown experiments of pro-fibrotic lncRNA H19X confirmed the potential of the model as screening platform for novel pro-fibrotic effectors. A future aim will be to optimize the model for high-throughput automated screening platforms.References:[1]Pachera, E., et al. (2020). “Long noncoding RNA H19X is a key mediator of TGF-β–driven fibrosis.” The Journal of Clinical Investigation 130(9): 4888-4905.Disclosure of Interests:Elena Pachera: None declared, Gabriela Kania: None declared, Astrid Juengel: None declared, Maurizio Calcagni Speakers bureau: Arthrex, Consultant of: Medartis, Arthrex, SilkBiomaterials, Grant/research support from: Medartis, Oliver Distler Speakers bureau: Actelion, Bayer, Boehringer Ingelheim, Medscape, Novartis, Roche, Consultant of: Abbvie, Actelion, Acceleron Pharma, Amgen, AnaMar, Arxx Therapeutics, Bayer, Baecon Discovery, Blade Therapeutics, Boehringer, CSL Behring, ChemomAb, Corpuspharma, Curzion Pharmaceuticals, Ergonex, Galapagos NV, GSK, Glenmark Pharmaceuticals, Inventiva, Italfarmaco, iQvia, -Kymera, Medac, Medscape, Mitsubishi Tanabe Pharma, MSD, Roche, Sanofi, UCB, Grant/research support from: Abbvie, Actelion, Bayer, Boehringer Ingelheim, Kymera Therapeutics, Mitsubishi Tanabe


Sign in / Sign up

Export Citation Format

Share Document