scholarly journals Proteomic Analysis of Low-Grade, Early-Stage Endometrial Carcinoma Reveals New Dysregulated Pathways Associated with Cell Death and Cell Signaling

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 794
Author(s):  
Álvaro López-Janeiro ◽  
Ignacio Ruz-Caracuel ◽  
Jorge L. Ramón-Patino ◽  
Vivian De Los Ríos ◽  
María Villalba Esparza ◽  
...  

Low-grade, early-stage endometrial carcinoma (EC) is the most frequent malignant tumor of the uterine corpus. However, the molecular alterations that underlie these tumors are far from being fully understood. The purpose of this study is to describe dysregulated molecular pathways from EC patients. Sixteen samples of tumor tissue and paired healthy controls were collected and both were subjected to mass spectrometry (MS)/MS proteomic analysis. Gene ontology and pathway analysis was performed to discover dysregulated pathways and/or proteins using different databases and bioinformatic tools. Dysregulated pathways were cross-validated in an independent external cohort. Cell signaling, immune response, and cell death-associated pathways were robustly identified. The SLIT/ROBO signaling pathway demonstrated dysregulation at the proteomic and transcriptomic level. Necroptosis and ferroptosis were cell death-associated processes aberrantly regulated, in addition to apoptosis. Immune response-associated pathways showed a dominance of innate immune responses. Tumor immune infiltrates measured by immunofluorescence demonstrated diverse lymphoid and myeloid populations. Our results suggest a role of SLIT/ROBO, necroptosis, and ferroptosis, as well as a prominent role of innate immune response in low-grade, early-stage EC. These results could guide future research in this group of tumors.

2021 ◽  
Vol 22 (3) ◽  
pp. 1048
Author(s):  
Balamurugan Sundaram ◽  
Thirumala-Devi Kanneganti

Innate immune receptors initiate a host immune response, or inflammatory response, upon detecting pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Among the innate immune receptors, nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) play a pivotal role in detecting cytosolic PAMPs and DAMPs. Some NLRs can form a multiprotein cytosolic complex known as the inflammasome. Inflammasome activation triggers caspase-1–mediated cleavage of the pore-forming protein gasdermin D (GSDMD), which drives a form of inflammatory cell death called pyroptosis. Parallelly, activated caspase-1 cleaves immature cytokines pro–IL-1β and pro–IL-18 into their active forms, which can be released via GSDMD membrane pores. The NLR family apoptosis inhibitory proteins (NAIP)-NLR family caspase-associated recruitment domain-containing protein 4 (NLRC4) inflammasome is important for mounting an immune response against Gram-negative bacteria. NLRC4 is activated through NAIPs sensing type 3 secretion system (T3SS) proteins from Gram-negative bacteria, such as Salmonella Typhimurium. Mutations in NAIPs and NLRC4 are linked to autoinflammatory disorders in humans. In this review, we highlight the role of the NAIP/NLRC4 inflammasome in host defense, autoinflammatory diseases, cancer, and cell death. We also discuss evidence pointing to a role of NLRC4 in PANoptosis, which was recently identified as a unique inflammatory programmed cell death pathway with important physiological relevance in a range of diseases. Improved understanding of the NLRC4 inflammasome and its potential roles in PANoptosis paves the way for identifying new therapeutic strategies to target disease.


Author(s):  
Ilnaz Rahimmanesh ◽  
Shirin Kouhpayeh ◽  
Hossein Khanahmad

The emerging of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak is associated with high morbidity and mortality rates globally. One of the most prominent characteristics of coronavirus disease-19 (COVID-19) is lymphopenia which is in contrast to other viral infections. This controversy might be explained by the evaluation of impaired innate and adaptive immune responses during the SARS-CoV-2 infection. During the innate immune response, poly-ADP-ribose polymerase (PARP) hyperactivated due to virus entry and extensive DNA damage sequentially leading to NAD+ depletion, ATP depletion and finally cell death. In contrast to the immune response against viral infections, cytotoxic T lymphocytes decline sharply in SARS-CoV-2 infection which might be due to infiltration and trapping in the lower respiratory tract. In addition, there are more factors proposed to involve in lymphopenia in COVID-19 infection like the role of CD38 which functions as NADase and intensifies NAD depletion which in turn affects NAD+ dependent Sirtuin proteins, as the regulators of cell death and viability. Lung tissue sequestration following cytokine storm supposed to be another reason for lymphopenia in COVID-19 patients. Protein 7a as one of the virus-encoded proteins induces apoptosis in various organ-derived cell lines. These mechanisms proposed to induce lymphopenia, although there are still more studies needed to clarify the underlying mechanisms for lymphopenia in COVID-19 patients.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 675
Author(s):  
Samira Elmanfi ◽  
Mustafa Yilmaz ◽  
Wilson W. S. Ong ◽  
Kofi S. Yeboah ◽  
Herman O. Sintim ◽  
...  

Host cells can recognize cytosolic double-stranded DNAs and endogenous second messengers as cyclic dinucleotides—including c-di-GMP, c-di-AMP, and cGAMP—of invading microbes via the critical and essential innate immune signaling adaptor molecule known as STING. This recognition activates the innate immune system and leads to the production of Type I interferons and proinflammatory cytokines. In this review, we (1) focus on the possible role of bacterial cyclic dinucleotides and the STING/TBK1/IRF3 pathway in the pathogenesis of periodontal disease and the regulation of periodontal immune response, and (2) review and discuss activators and inhibitors of the STING pathway as immune response regulators and their potential utility in the treatment of periodontitis. PubMed/Medline, Scopus, and Web of Science were searched with the terms “STING”, “TBK 1”, “IRF3”, and “cGAS”—alone, or together with “periodontitis”. Current studies produced evidence for using STING-pathway-targeting molecules as part of anticancer therapy, and as vaccine adjuvants against microbial infections; however, the role of the STING/TBK1/IRF3 pathway in periodontal disease pathogenesis is still undiscovered. Understanding the stimulation of the innate immune response by cyclic dinucleotides opens a new approach to host modulation therapies in periodontology.


Gut ◽  
2019 ◽  
Vol 68 (8) ◽  
pp. 1477-1492 ◽  
Author(s):  
Lijun Liao ◽  
Kai Markus Schneider ◽  
Eric J C Galvez ◽  
Mick Frissen ◽  
Hanns-Ulrich Marschall ◽  
...  

ObjectiveThere is a striking association between human cholestatic liver disease (CLD) and inflammatory bowel disease. However, the functional implications for intestinal microbiota and inflammasome-mediated innate immune response in CLD remain elusive. Here we investigated the functional role of gut–liver crosstalk for CLD in the murine Mdr2 knockout (Mdr2−/−) model resembling human primary sclerosing cholangitis (PSC).DesignMale Mdr2−/−, Mdr2−/− crossed with hepatocyte-specific deletion of caspase-8 (Mdr2−/−/Casp8∆hepa) and wild-type (WT) control mice were housed for 8 or 52 weeks, respectively, to characterise the impact of Mdr2 deletion on liver and gut including bile acid and microbiota profiling. To block caspase activation, a pan-caspase inhibitor (IDN-7314) was administered. Finally, the functional role of Mdr2−/−-associated intestinal dysbiosis was studied by microbiota transfer experiments.ResultsMdr2−/− mice displayed an unfavourable intestinal microbiota signature and pronounced NLRP3 inflammasome activation within the gut–liver axis. Intestinal dysbiosis in Mdr2−/− mice prompted intestinal barrier dysfunction and increased bacterial translocation amplifying the hepatic NLRP3-mediated innate immune response. Transfer of Mdr2−/− microbiota into healthy WT control mice induced significant liver injury in recipient mice, highlighting the causal role of intestinal dysbiosis for disease progression. Strikingly, IDN-7314 dampened inflammasome activation, ameliorated liver injury, reversed serum bile acid profile and cholestasis-associated microbiota signature.ConclusionsMDR2-associated cholestasis triggers intestinal dysbiosis. In turn, translocation of endotoxin into the portal vein and subsequent NLRP3 inflammasome activation contribute to higher liver injury. This process does not essentially depend on caspase-8 in hepatocytes, but can be blocked by IDN-7314.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Viktoria V. Мokrozub ◽  
Liudmyla M. Lazarenko ◽  
Liubov M. Sichel ◽  
Lidia P. Babenko ◽  
Petro M. Lytvyn ◽  
...  

2006 ◽  
Vol 203 (4) ◽  
pp. 933-940 ◽  
Author(s):  
Javier A. Carrero ◽  
Boris Calderon ◽  
Emil R. Unanue

Mice deficient in lymphocytes are more resistant than normal mice to Listeria monocytogenes infection during the early innate immune response. This paradox remains unresolved: lymphocytes are required for sterilizing immunity, but their presence during the early stage of the infection is not an asset and may even be detrimental. We found that lymphocyte-deficient mice, which showed limited apoptosis in infected organs, were resistant during the first four days of infection but became susceptible when engrafted with lymphocytes. Engraftment with lymphocytes from type I interferon receptor–deficient (IFN-αβR−/−) mice, which had reduced apoptosis, did not confer increased susceptibility to infection, even when the phagocytes were IFN-αβR+/+. The attenuation of innate immunity was due, in part, to the production of the antiinflammatory cytokine interleukin 10 by phagocytic cells after the apoptotic phase of the infection. Thus, immunodeficient mice were more resistant relative to normal mice because the latter went through a stage of lymphocyte apoptosis that was detrimental to the innate immune response. This is an example of a bacterial pathogen creating a cascade of events that leads to a permissive infective niche early during infection.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1089
Author(s):  
Huimin Ren ◽  
Xiaohong Zhao ◽  
Wenjie Li ◽  
Jamshaid Hussain ◽  
Guoning Qi ◽  
...  

Programmed cell death (PCD) is a process intended for the maintenance of cellular homeostasis by eliminating old, damaged, or unwanted cells. In plants, PCD takes place during developmental processes and in response to biotic and abiotic stresses. In contrast to the field of animal studies, PCD is not well understood in plants. Calcium (Ca2+) is a universal cell signaling entity and regulates numerous physiological activities across all the kingdoms of life. The cytosolic increase in Ca2+ is a prerequisite for the induction of PCD in plants. Although over the past years, we have witnessed significant progress in understanding the role of Ca2+ in the regulation of PCD, it is still unclear how the upstream stress perception leads to the Ca2+ elevation and how the signal is further propagated to result in the onset of PCD. In this review article, we discuss recent advancements in the field, and compare the role of Ca2+ signaling in PCD in biotic and abiotic stresses. Moreover, we discuss the upstream and downstream components of Ca2+ signaling and its crosstalk with other signaling pathways in PCD. The review is expected to provide new insights into the role of Ca2+ signaling in PCD and to identify gaps for future research efforts.


Sign in / Sign up

Export Citation Format

Share Document