scholarly journals Modeling Hepatocellular Carcinoma Cells Dynamics by Serological and Imaging Biomarkers to Explain the Different Responses to Sorafenib and Regorafenib

Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2064
Author(s):  
Piero Colombatto ◽  
Coskun Ozer Demirtas ◽  
Gabriele Ricco ◽  
Luigi Civitano ◽  
Piero Boraschi ◽  
...  

In advanced HCC, tyrosine-kinase inhibitors obtain partial responses (PR) in some patients and complete responses (CR) in a few. Better understanding of the mechanism of response could be achieved by the radiomic approach combining digital imaging and serological biomarkers (α-fetoprotein, AFP and protein induced by vitamin K absence-II, PIVKA-II) kinetics. A physic-mathematical model was developed to investigate cancer cells and vasculature dynamics in three prototype patients receiving sorafenib and/or regorafenib and applied in seven others for validation. Overall four patients showed CR, two PR, two stable-disease (SD) and two progressive-disease (PD). The rate constant of cancer cells production was higher in PD than in PR-SD and CR (median: 0.398 vs. 0.325 vs. 0.316 C × day−1). Therapy induced reduction of neo-angiogenesis was greater in CR than in PR-SD and PD (median: 83.2% vs. 29.4% and 2.0%), as the reduction of cell-proliferation (55.2% vs. 7.6% and 0.7%). An additional dose-dependent acceleration of tumor vasculature decay was also observed in CR. AFP and cancer cells followed the same kinetics, whereas PIVKA-II time/dose dependent fluctuations were influenced also by tissue ischemia. In conclusion, pending confirmation in a larger HCC cohort, modeling serological and imaging biomarkers could be a new tool for systemic therapy personalization.

2021 ◽  
Author(s):  
Mehmet Oguz ◽  
Ayse Yildirim ◽  
Irem Mukaddes Durmus ◽  
Serdar Karakurt ◽  
Mustafa Yilmaz

Abstract Since calixarenes are more easily synthesized and functionalized than other supramolecules, they are compounds of interest in organic chemistry. In this study, the dihydrazide (3a and 3b) and diamino propyl (6a and 6b) derivatives of p-tert-butylcalix[4]arene and calix[4]arene were synthesized. Then the L-proline methyl ester substituted chlorocyclopropenium was reacted with the calix[4]arene derivatives (3a, 3b, 6a, and 6b) at room temperature in CH2Cl2 to obtain calix[4]arene superbase derivatives (4a, 4b, 7a, and 7b) in 75%, 60%, 70% and 55% yield, respectively. The synthesized compounds' structure was elucidated by using spectroscopic techniques (FTIR, 1H NMR, and 13C NMR ). The cytotoxic properties of the calix[4]arene superbase derivatives were investigated against different human cancerous cells, including A549, DLD-1, HEPG2, and PC-3, as well as human healthy epithelium cell line PNT1A. The cytotoxicity results showed that calix[4]arene superbase derivatives inhibited the proliferation of DLD-1, A549, HEPG2, and PC-3 cells in a dose-dependent manner. Compound 7a had the highest toxic effect on colorectal carcinoma (IC50: 4.7 µM), and the IC50 values were 18.5 µM and 74.4µM against human prostate and lung cancer cells, respectively. Furthermore, the compound 4b was found more effective on hepatocellular carcinoma cells (IC50: 210.2 µM). As a result, the synthesized calix[4]arene superbase derivatives can be developed to treat different human cancer cells. They can be considered as a preliminary result for molecular-level research.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2022
Author(s):  
Francesca Iommelli ◽  
Viviana De Rosa ◽  
Cristina Terlizzi ◽  
Rosa Fonti ◽  
Rosa Camerlingo ◽  
...  

Notch1 plays a key role in epithelial-mesenchymal transition (EMT) and in the maintenance of cancer stem cells. In the present study we tested whether high levels of activated Notch1 in oncogene-driven NSCLC can induce a reversible shift of driver dependence from EGFR to Notch1, and thus causing resistance to EGFR inhibitors. Adherent cells (parental) and tumor spheres (TS) from NSCLC H1975 cells and patient-derived CD133-positive cells were tested for EGFR and Notch1 signaling cascade. The Notch1-dependent modulation of EGFR, NCID, Hes1, p53, and Sp1 were then analyzed in parental cells by binding assays with a Notch1 agonist, DLL4. TS were more resistant than parental cells to EGFR inhibitors. A strong upregulation of Notch1 and a concomitant downregulation of EGFR were observed in TS compared to parental cells. Parental cell exposure to DLL4 showed a dose-dependent decrease of EGFR and a simultaneous increase of NCID, Hes1, p53, and Sp1, along with the dislocation of Sp1 from the EGFR promoter. Furthermore, an enhanced interaction between p53 and Sp1 was observed in TS. In NSCLC cells, high levels of active Notch1 can promote a reversible shift of driver dependence from EGFR to Notch1, leading to resistance to EGFR inhibitors.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Gabriela Carrasco-Torres ◽  
Rafael Baltiérrez-Hoyos ◽  
Erik Andrade-Jorge ◽  
Saúl Villa-Treviño ◽  
José Guadalupe Trujillo-Ferrara ◽  
...  

The inflammatory condition of malignant tumors continually exposes cancer cells to reactive oxygen species, an oxidizing condition that leads to the activation of the antioxidant defense system. A similar activation occurs with glutathione production. This oxidant condition enables tumor cells to maintain the energy required for growth, proliferation, and evasion of cell death. The objective of the present study was to determine the effect on hepatocellular carcinoma cells of a combination treatment with maleic anhydride derivatives (prooxidants) and quercetin (an antioxidant). The results show that the combination of a prooxidant/antioxidant had a cytotoxic effect on HuH7 and HepG2 liver cancer cells, but not on either of two normal human epithelial cell lines or on primary hepatocytes. The combination treatment triggered apoptosis in hepatocellular carcinoma cells by activating the intrinsic pathway and causing S phase arrest during cell cycle progression. There is also clear evidence of a modification in cytoskeletal actin and nucleus morphology at 24 and 48 h posttreatment. Thus, the current data suggest that the combination of two anticarcinogenic drugs, a prooxidant followed by an antioxidant, can be further explored for antitumor potential as a new treatment strategy.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 97
Author(s):  
Odeya Marciano ◽  
Linoy Mehazri ◽  
Sally Shpungin ◽  
Alexander Varvak ◽  
Eldad Zacksenhaus ◽  
...  

Aerobic glycolysis is an important metabolic adaptation of cancer cells. However, there is growing evidence that reprogrammed mitochondria also play an important metabolic role in metastatic dissemination. Two constituents of the reprogrammed mitochondria of cancer cells are the intracellular tyrosine kinase Fer and its cancer- and sperm-specific variant, FerT. Here, we show that Fer and FerT control mitochondrial susceptibility to therapeutic and hypoxic stress in metastatic colon (SW620) and non-small cell lung cancer (NSCLC-H1299) cells. Fer- and FerT-deficient SW620 and H1299 cells (SW∆Fer/FerT and H∆Fer/FerT cells, respectively) become highly sensitive to metformin treatment and to hypoxia under glucose-restrictive conditions. Metformin impaired mitochondrial functioning that was accompanied by ATP deficiency and robust death in SW∆Fer/FerT and H∆Fer/FerT cells compared to the parental SW620 and H1299 cells. Notably, selective knockout of the fer gene without affecting FerT expression reduced sensitivity to metformin and hypoxia seen in SW∆Fer/FerT cells. Thus, Fer and FerT modulate the mitochondrial susceptibility of metastatic cancer cells to hypoxia and metformin. Targeting Fer/FerT may therefore provide a novel anticancer treatment by efficient, selective, and more versatile disruption of mitochondrial function in malignant cells.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 576
Author(s):  
Sofia Giacosa ◽  
Catherine Pillet ◽  
Irinka Séraudie ◽  
Laurent Guyon ◽  
Yann Wallez ◽  
...  

Kinase-targeted agents demonstrate antitumor activity in advanced metastatic clear cell renal cell carcinoma (ccRCC), which remains largely incurable. Integration of genomic approaches through small-molecules and genetically based high-throughput screening holds the promise of improved discovery of candidate targets for cancer therapy. The 786-O cell line represents a model for most ccRCC that have a loss of functional pVHL (von Hippel-Lindau). A multiplexed assay was used to study the cellular fitness of a panel of engineered ccRCC isogenic 786-O VHL− cell lines in response to a collection of targeted cancer therapeutics including kinase inhibitors, allowing the interrogation of over 2880 drug–gene pairs. Among diverse patterns of drug sensitivities, investigation of the mechanistic effect of one selected drug combination on tumor spheroids and ex vivo renal tumor slice cultures showed that VHL-defective ccRCC cells were more vulnerable to the combined inhibition of the CK2 and ATM kinases than wild-type VHL cells. Importantly, we found that HIF-2α acts as a key mediator that potentiates the response to combined CK2/ATM inhibition by triggering ROS-dependent apoptosis. Importantly, our findings reveal a selective killing of VHL-deficient renal carcinoma cells and provide a rationale for a mechanism-based use of combined CK2/ATM inhibitors for improved patient care in metastatic VHL-ccRCC.


2021 ◽  
Vol 11 (8) ◽  
pp. 3524
Author(s):  
Azeem Ul Yaqin Syed ◽  
Muhammad A. Ahmed ◽  
Eman I. AlSagob ◽  
Mansour Al-Askar ◽  
Abdulrahman M. AlMubarak ◽  
...  

The aim was to determine the cytotoxicity of Khat (Catha edulis (Vahl) Forssk. ex Endl) on normal oral fibroblasts (NOFs) and SCC4 (squamous carcinoma cells) along with expression of α-smooth muscle actin (α-SMA) in fibroblasts. Khat filtrate was prepared to obtain a concentrated viscous solution. NOFs and SCC4 cells were cultured in biological cabinets and were grown in Dulbeccos’ modified Eagles medium. Frozen cells were thawed at 37 °C and cell seeding was performed. NOFs and SCC4 cells were seeded on 96 well plates and allowed to attach. The medium was removed and a fresh medium containing different concentrations of Khat was added. The group without Khat served as a negative control and 4% paraformaldehyde as the positive control. Cell viability was assessed using the MTT assay and effect of Khat on fibroblast and SCC4 phenotypes was evaluated by immunostaining. Analysis of variance was used to assess data (p < 0.05). NOF 316 showed cell death in response to 4% paraformaldehyde, 12.5, 6.25, and 3.12 mg/mL of Khat. The highest concentration of Khat (25 mg/mL) failed to cause cytotoxicity of NOF 316. NOF 319 and NOF 26 displayed cell death at all concentrations of Khat, however, cytotoxicity was not dose dependent. NOF 18 and SCC4 cells showed dose-dependent cell death. NOF 316 showed α-SMA expression after 1 mg/mL of Khat exposure. Not all fibroblasts were α-SMA-positive, suggesting specific activation of a subset of fibroblasts. Khat is cytotoxic to NOF and SCC4 cells. Furthermore, it can also cause activation and phenotypic changes in oral fibroblasts, indicating a potential role in progression of oral squamous cell carcinoma.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Carmela Martini ◽  
Mark DeNichilo ◽  
Danielle P. King ◽  
Michaelia P. Cockshell ◽  
Brenton Ebert ◽  
...  

Abstract Background The formation of blood vessels within solid tumors directly contributes to cancer growth and metastasis. Until recently, tumor vasculature was thought to occur exclusively via endothelial cell (EC) lined structures (i.e. angiogenesis), but a second source of tumor vasculature arises from the cancer cells themselves, a process known as vasculogenic mimicry (VM). While it is generally understood that the function of VM vessels is the same as that of EC-lined vessels (i.e. to supply oxygen and nutrients to the proliferating cancer cells), the molecular mechanisms underpinning VM are yet to be fully elucidated. Methods Human VM-competent melanoma cell lines were examined for their VM potential using the in vitro angiogenesis assays (Matrigel), together with inhibition studies using small interfering RNA and blocking monoclonal antibodies. Invasion assays and adhesion assays were used to examine cancer cell function. Results Herein we demonstrate that CD36, a cell surface glycoprotein known to promote angiogenesis by ECs, also supports VM formation by human melanoma cancer cells. In silico analysis of CD36 expression within the melanoma cohort of The Cancer Genome Atlas suggests that melanoma patients with high expression of CD36 have a poorer clinical outcome. Using in vitro ‘angiogenesis’ assays and CD36-knockdown approaches, we reveal that CD36 supports VM formation by human melanoma cells as well as adhesion to, and invasion through, a cancer derived extracellular matrix substrate. Interestingly, thrombospondin-1 (TSP-1), a ligand for CD36 on ECs that inhibits angiogenesis, has no effect on VM formation. Further investigation revealed a role for laminin, but not collagen or fibronectin, as ligands for CD36 expressing melanoma cells. Conclusions Taken together, this study suggests that CD36 is a novel regulator of VM by melanoma cancer cells that is facilitated, at least in part, via integrin-α3 and laminin. Unlike angiogenesis, VM is not perturbed by the presence of TSP-1, thus providing new information on differences between these two processes of tumor vascularization which may be exploited to combat cancer progression.


2020 ◽  
Vol 245 (13) ◽  
pp. 1073-1086
Author(s):  
Sukanya Roy ◽  
Subhashree Kumaravel ◽  
Ankith Sharma ◽  
Camille L Duran ◽  
Kayla J Bayless ◽  
...  

Hypoxia or low oxygen concentration in tumor microenvironment has widespread effects ranging from altered angiogenesis and lymphangiogenesis, tumor metabolism, growth, and therapeutic resistance in different cancer types. A large number of these effects are mediated by the transcription factor hypoxia inducible factor 1⍺ (HIF-1⍺) which is activated by hypoxia. HIF1⍺ induces glycolytic genes and reduces mitochondrial respiration rate in hypoxic tumoral regions through modulation of various cells in tumor microenvironment like cancer-associated fibroblasts. Immune evasion driven by HIF-1⍺ further contributes to enhanced survival of cancer cells. By altering drug target expression, metabolic regulation, and oxygen consumption, hypoxia leads to enhanced growth and survival of cancer cells. Tumor cells in hypoxic conditions thus attain aggressive phenotypes and become resistant to chemo- and radio- therapies resulting in higher mortality. While a number of new therapeutic strategies have succeeded in targeting hypoxia, a significant improvement of these needs a more detailed understanding of the various effects and molecular mechanisms regulated by hypoxia and its effects on modulation of the tumor vasculature. This review focuses on the chief hypoxia-driven molecular mechanisms and their impact on therapeutic resistance in tumors that drive an aggressive phenotype. Impact statement Hypoxia contributes to tumor aggressiveness and promotes growth of many solid tumors that are often resistant to conventional therapies. In order to achieve successful therapeutic strategies targeting different cancer types, it is necessary to understand the molecular mechanisms and signaling pathways that are induced by hypoxia. Aberrant tumor vasculature and alterations in cellular metabolism and drug resistance due to hypoxia further confound this problem. This review focuses on the implications of hypoxia in an inflammatory TME and its impact on the signaling and metabolic pathways regulating growth and progression of cancer, along with changes in lymphangiogenic and angiogenic mechanisms. Finally, the overarching role of hypoxia in mediating therapeutic resistance in cancers is discussed.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2633
Author(s):  
Ian R. Ellis

The link between the migration of cancer cells and the spread of cancers has been established for many years [...]


2021 ◽  
Author(s):  
Yana Evstratova ◽  
Margarita Kobyakova ◽  
Irina Odinokova ◽  
Alexander Stolyarov ◽  
Artyom Mishukov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document