scholarly journals Estrogens and the Schrödinger’s Cat in the Ovarian Tumor Microenvironment

Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 5011
Author(s):  
Marija Gjorgoska ◽  
Tea Lanišnik Rižner

Ovarian cancer is a heterogeneous disease affecting the aging ovary, in concert with a complex network of cells and signals, together representing the ovarian tumor microenvironment. As in the “Schrödinger’s cat” thought experiment, the context-dependent constituents of the—by the time of diagnosis—well-established tumor microenvironment may display a tumor‑protective and ‑destructive role. Systemic and locally synthesized estrogens contribute to the formation of a pro-tumoral microenvironment that enables the sustained tumor growth, invasion and metastasis. Here we focus on the estrogen biosynthetic and metabolic pathways in ovarian cancer and elaborate their actions on phenotypically plastic, estrogen-responsive, aging immune cells of the tumor microenvironment, altogether highlighting the multicomponent-connectedness and complexity of cancer, and contributing to a broader understanding of the ovarian cancer biology.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Farias ◽  
A. Soto ◽  
F. Puttur ◽  
C. J. Goldin ◽  
S. Sosa ◽  
...  

AbstractBrucella lumazine synthase (BLS) is a homodecameric protein that activates dendritic cells via toll like receptor 4, inducing the secretion of pro-inflammatory cytokines and chemokines. We have previously shown that BLS has a therapeutic effect in B16 melanoma-bearing mice only when administered at early stages of tumor growth. In this work, we study the mechanisms underlying the therapeutic effect of BLS, by analyzing the tumor microenvironment. Administration of BLS at early stages of tumor growth induces high levels of serum IFN-γ, as well as an increment of hematopoietic immune cells within the tumor. Moreover, BLS-treatment increases the ratio of effector to regulatory cells. However, all treated mice eventually succumb to the tumors. Therefore, we combined BLS administration with anti-PD-1 treatment. Combined treatment increases the outcome of both monotherapies. In conclusion, we show that the absence of the therapeutic effect at late stages of tumor growth correlates with low levels of serum IFN-γ and lower infiltration of immune cells in the tumor, both of which are essential to delay tumor growth. Furthermore, the combined treatment of BLS and PD-1 blockade shows that BLS could be exploited as an essential immunomodulator in combination therapy with an immune checkpoint blockade to treat skin cancer.


2017 ◽  
Vol 114 (51) ◽  
pp. E10981-E10990 ◽  
Author(s):  
Meredith L. Stone ◽  
Katherine B. Chiappinelli ◽  
Huili Li ◽  
Lauren M. Murphy ◽  
Meghan E. Travers ◽  
...  

Ovarian cancer is the most lethal of all gynecological cancers, and there is an urgent unmet need to develop new therapies. Epithelial ovarian cancer (EOC) is characterized by an immune suppressive microenvironment, and response of ovarian cancers to immune therapies has thus far been disappointing. We now find, in a mouse model of EOC, that clinically relevant doses of DNA methyltransferase and histone deacetylase inhibitors (DNMTi and HDACi, respectively) reduce the immune suppressive microenvironment through type I IFN signaling and improve response to immune checkpoint therapy. These data indicate that the type I IFN response is required for effective in vivo antitumorigenic actions of the DNMTi 5-azacytidine (AZA). Through type I IFN signaling, AZA increases the numbers of CD45+ immune cells and the percentage of active CD8+ T and natural killer (NK) cells in the tumor microenvironment, while reducing tumor burden and extending survival. AZA also increases viral defense gene expression in both tumor and immune cells, and reduces the percentage of macrophages and myeloid-derived suppressor cells in the tumor microenvironment. The addition of an HDACi to AZA enhances the modulation of the immune microenvironment, specifically increasing T and NK cell activation and reducing macrophages over AZA treatment alone, while further increasing the survival of the mice. Finally, a triple combination of DNMTi/HDACi plus the immune checkpoint inhibitor α-PD-1 provides the best antitumor effect and longest overall survival, and may be an attractive candidate for future clinical trials in ovarian cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kewei Liu ◽  
Ai Huang ◽  
Jun Nie ◽  
Jun Tan ◽  
Shijie Xing ◽  
...  

Interleukin-35 (IL-35) is a heterodimeric cytokine composed of Epstein-Barr virus-induced gene 3 (EBI3) and IL-12p35 that has recently been shown to play diverse and important roles in the tumor microenvironment (TME). Owing to its immunosuppressive activity and ability to promote tumor growth and progression, IL-35 is widely recognized as a key mediator of TME status. Immune cells are key mediators of diverse tumor-related phenotypes, and immunosuppressive cytokines such as IL-35 can promote tumor growth and metastasis in TME. These influences should be considered together. Since tumor immunotherapy based on immune checkpoint blockade remains ineffective in many patients due to tumoral resistance, a new target or efficacy enhancing factor is urgently needed. Suppressing IL-35 production and activity has been demonstrated as an effective factor that inhibits tumor cells viability, and further investigation of this cytokine is warranted. However, the mechanistic basis for IL-35-mediated regulation of immune cells in the TME remains to be fully clarified. In the present review, we explore the roles of IL-35 in regulating immune cells within the TME. In addition, we highlight IL-35 as a specific immunological target and discuss its possible relevance in the context of immunotherapy. Lastly, we sought to summarize potential future research directions that may guide the advancement of current understanding regarding the role of this important cytokine as a regulator of oncogenesis.


Cancers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 242 ◽  
Author(s):  
Galaxia Rodriguez ◽  
Kristianne Galpin ◽  
Curtis McCloskey ◽  
Barbara Vanderhyden

Immunotherapy as a treatment for cancer is a growing field of endeavor but reports of success have been limited for epithelial ovarian cancer. Overcoming the challenges to developing more effective therapeutic approaches lies in a better understanding of the factors in cancer cells and the surrounding tumor microenvironment that limit response to immunotherapies. This article provides an overview of some ovarian cancer cell features such as tumor-associated antigens, ovarian cancer-derived exosomes, tumor mutational burden and overexpression of immunoinhibitory molecules. Moreover, we describe relevant cell types found in epithelial ovarian tumors including immune cells (T and B lymphocytes, Tregs, NK cells, TAMs, MDSCs) and other components found in the tumor microenvironment including fibroblasts and the adipocytes in the omentum. We focus on how those components may influence responses to standard treatments or immunotherapies.


2021 ◽  
pp. 67-78
Author(s):  
Varvara Nikolaevna Zhurman ◽  
Natalia Gennadevna Plekhova ◽  
Ekaterina Valeryevna Eliseeva

The article is a review of the literature, which analyzes the data on the role of cells of the immune system, cytokines and other biologically active substances secreted by them in the interstitial space of an ovarian tumor. The emphasis is made on the mechanism of realization by immune cells of the stimulating and suppressing action on the development of the tumor. Considerable attention is paid to the prognostic role of immune cells in the development of epithelial ovarian cancer.


Author(s):  
Guoqiang Chen ◽  
Lei Qiu ◽  
Jinghai Gao ◽  
Jing Wang ◽  
Jianhong Dang ◽  
...  

In the past decade, several discoveries have documented the existence of innervation in ovarian cancer and cervical cancer. Notably, various neurotransmitters released by the activation of the sympathetic nervous system can promote the proliferation and metastasis of tumor cells and regulate immune cells in the tumor microenvironment. Therefore, a better understanding of the mechanisms involving neurotransmitters in the occurrence and development of gynecological cancers will be beneficial for exploring the feasibility of using inexpensive β-blockers and dopamine agonists in the clinical treatment of gynecological cancers. Additionally, this article provides some new insights into targeting tumor innervation and neurotransmitters in the tumor microenvironment.


2020 ◽  
Author(s):  
Ravikumar Muthuswamy ◽  
AJ Robert McGray ◽  
Sebastiano Battaglia ◽  
Wenjun He ◽  
Anthony Miliotto ◽  
...  

AbstractWhile the beneficial role played by tissue-resident memory T cells (Trm) in tumor control has emerged, the chemotactic mechanisms associated with their localization and retention in the tumor microenvironment (TME) of cancers including ovarian are poorly understood. The current study has identified chemokine receptor CXCR6 as crucial for Trm responses to ovarian cancer by promoting their localization and retention in the ovarian tumor microenvironment. In human ovarian cancer patients, CXCR6 significantly marked CD8+ CD103+ tumor-infiltrating Trm cells. Functional studies in mice revealed high expression of CXCR6 in tumor-specific T cells that reside in tissues, but not by those in circulation. Knockout of CXCR6 in tumor-specific T cells led to a heightened circulatory response in blood, but diminished resident memory cell accumulation in tumors, culminating in poor tumor control. Analysis of Wild type (Wt.) and CXCR6KO (KO) tumor-specific T cells trafficking in recipient mice using bioluminescent imaging revealed that compared to Wt., KO T cells preferentially localized to the spleen, indicating the possibility of reduced retention in tumor tissues. These findings indicate that CXCR6 by mediating increased retention of tumor-specific T cells in the ovarian tumor microenvironment, promotes resident memory T cell-mediated surveillance and control of ovarian cancer.


2020 ◽  
Author(s):  
Peipei Gao ◽  
Ting Peng ◽  
Canhui Cao ◽  
Shitong Lin ◽  
Ping Wu ◽  
...  

Abstract Background: Claudin family is a group of membrane proteins related to tight junction. There are many studies about them in cancer, but few studies pay attention to the relationship between them and the tumor microenvironment. In our research, we mainly focused on the genes related to the prognosis of ovarian cancer, and explored the relationship between them and the tumor microenvironment of ovarian cancer.Methods: The cBioProtal provided the genetic variation pattern of claudin gene family in ovarian cancer. The ONCOMINE database and Gene Expression Profiling Interactive Analysis (GEPIA) were used to exploring the mRNA expression of claudins in cancers. The prognostic potential of these genes was examined via Kaplan-Meier plotter. Immunologic signatures were enriched by gene set enrichment analysis (GSEA). The correlations between claudins and the tumor microenvironment of ovarian cancer were investigated via Tumor Immune Estimation Resource (TIMER).Results: In our research, claudin genes were altered in 363 (62%) of queried patients/samples. Abnormal expression levels of claudins were observed in various cancers. Among them, we found that CLDN3, CLDN4, CLDN6, CLDN10, CLDN15 and CLDN16 were significantly correlated with overall survival of patients with ovarian cancer. GSEA revealed that CLDN6 and CLDN10 were significantly enriched in immunologic signatures about B cell, CD4 T cell and CD8 T cell. What makes more sense is that CLDN6 and CLDN10 were found related to the tumor microenvironment. CLDN6 expression was negatively correlated with immune infiltration level in ovarian cancer, and CLDN10 expression was positively correlated with immune infiltration level in ovarian cancer. Further study revealed the CLDN6 expression level was negatively correlated with gene markers of various immune cells in ovarian cancer. And, the expression of CLDN10 was positive correlated with gene markers of immune cells in ovarian cancer.Conclusions: CLDN6 and CLDN10 were prognostic biomarkers, and correlated with immune infiltration in ovarian cancer. Our results revealed new roles for CLDN6 and CLDN10, and they were potential therapeutic targets in the treatment of ovarian cancer.


2019 ◽  
Author(s):  
Wenfa Ng

Although various immune cells could infiltrate the cellular and tissue environment surrounding a tumor, the tumor microenvironment nevertheless presents immunosuppressive conditions unfavorable for immune cells to conduct large scale attack on cancer cells. For example, T-cells that make it to the tumor microenvironment are typically non-functional in containing tumor growth. On the other hand, macrophages could infiltrate the tumor microenvironment and is an important cell type modulated by and which also modulates the tumor. Specifically, two variants of macrophages with different phenotypes are known to exhibit close interactions with tumors. Known as M1 and M2 macrophages, they present dichotomously different signals to the tumor. Specifically, M1 macrophages control tumor growth while M2 macrophages promote tumor growth. Thus, from a treatment perspective, it would be desirable to tune the phenotypes and cell differentiation program of macrophages towards the M1 subset. To do that, differential gene expression of macrophages in the M1 and M2 lineages must be understood. Such a goal could be achieved with the profiling of tumor associated macrophages from tumor biopsy samples for gene expression patterns characteristic of the two dominant macrophage lineages. Single cell RNA-sequencing conducted after flow cytometry sorting of M1 and M2 macrophages would highlight gene expression patterns associated with each lineage, and the cellular differentiation programs that prompted entry into particular macrophage subtype. Knowledge of gene expression pattern associated with each macrophage lineage is not useful for tuning their differentiation state unless specific transcription factor that trigger the regulon could be identified. To this end, transcription factors that have been upregulated in the differentiation program could be profiled from the transcriptome data, and help inform the design of vectors for targeted overexpression of specific transcription factor for modulating cellular differentiation of macrophage. Given their low immunogenicity, adeno-associated virus (AAV) could serve as vectors for ferrying the gene cassette containing specific transcription factors into macrophages. Delivery methods for the AAV could be via targeted local infusion of vectors to tumors or through the systemic circulation, but the latter approach would result in lower transfection efficiency. Collectively, possibility exists of tuning the differentiation state of macrophage associated with tumors for enabling tumor controlling lineage to be dominant. Such immuno-targeted therapy would harness the body’s macrophages for controlling tumor growth and represents a treatment option that may yield fewer side effects compared to conventional chemotherapy. But, identification of genes that control lineage-specific differentiation program and the delivery of gene cassette to macrophages for modulating their differentiation remain key challenges.


Sign in / Sign up

Export Citation Format

Share Document