scholarly journals Recent Advances in Enzyme-Nanostructure Biocatalysts with Enhanced Activity

Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 338
Author(s):  
Jing An ◽  
Galong Li ◽  
Yifan Zhang ◽  
Tingbin Zhang ◽  
Xiaoli Liu ◽  
...  

Owing to their unique physicochemical properties and comparable size to biomacromolecules, functional nanostructures have served as powerful supports to construct enzyme-nanostructure biocatalysts (nanobiocatalysts). Of particular importance, recent years have witnessed the development of novel nanobiocatalysts with remarkably increased enzyme activities. This review provides a comprehensive description of recent advances in the field of nanobiocatalysts, with systematic elaboration of the underlying mechanisms of activity enhancement, including metal ion activation, electron transfer, morphology effects, mass transfer limitations, and conformation changes. The nanobiocatalysts highlighted here are expected to provide an insight into enzyme–nanostructure interaction, and provide a guideline for future design of high-efficiency nanobiocatalysts in both fundamental research and practical applications.

Author(s):  
Farhan Javaid ◽  
Habib Pouriayevali ◽  
Karsten Durst

Abstract To comprehend the mechanical behavior of a polycrystalline material, an in-depth analysis of individual grain boundary (GB) and dislocation interactions is of prime importance. In the past decade, nanoindentation emerged as a powerful tool to study the local mechanical response in the vicinity of the GB. The improved instrumentation and test protocols allow to capture various GB–dislocation interactions during the nanoindentation in the form of strain bursts on the load–displacement curve. Moreover, the interaction of the plastic zone with the GB provides important insight into the dislocation transmission effects of distinct grain boundaries. Of great importance for the analysis and interpretation of the observed effects are microstructural investigations and computational approaches. This review paper focused on recent advances in the dislocation–GB interactions and underlying mechanisms studied via nanoindentation, which includes GB pop-in phenomenon, localized grain movement under ambient conditions, and an analysis of the slip transfer mechanism using theoretical treatments and simulations. Graphical abstract


2021 ◽  
Vol 33 (16) ◽  
pp. 2004577
Author(s):  
Mingzheng Ge ◽  
Chunyan Cao ◽  
Gill M. Biesold ◽  
Christopher D. Sewell ◽  
Shu‐Meng Hao ◽  
...  

1950 ◽  
Vol 16 ◽  
pp. 87-100 ◽  
Author(s):  
J. G. D. Clark

When the present writer published his Mesolithic Settlement of Northern Europe in 1936, much had already been established about the pre-neolithic occupation of the West Baltic area. Paradoxically it is for this very reason that recent advances in this field are of more than regional interest, for it is only by intensifying fundamental research in the most favourable territories, in conjunction with more extensive surveys, that we can gain the evidence needed for a real insight into the processes of prehistory. One reason for the pre-eminence of the area in mesolithic research is the scope it provides for co-operation between archaeologists and natural scientists. Team-work in quaternary research has made it possible to study the earliest cultures in their correct chronological and ecological setting, and it has also guided prehistorians to the sites most likely to yield the maximum range of cultural evidence.


2020 ◽  
Vol 6 (20) ◽  
pp. eaba1321 ◽  
Author(s):  
Chuanhui Huang ◽  
Xiangyu Chen ◽  
Zhenjie Xue ◽  
Tie Wang

Nanoparticle (NP) assemblies are among the foremost achievements of nanoscience and nanotechnology because their interparticle interactions overcome the weaknesses displayed by individual NPs. However, previous studies have considered NP assemblies as inanimate, which had led to their dynamic properties being overlooked. Animate properties, i.e., those mimicking biological properties, endow NP ensembles with unique and unexpected functionalities for practical applications. In this critical review, we highlight recent advances in our understanding of the properties of NP assemblies, particularly their animate properties. Key examples are used to illustrate critical concepts, and special emphasis is placed on animate property-dependent applications. Last, we discuss the barriers to further advances in this field.


2021 ◽  
Vol 33 (16) ◽  
pp. 2170124
Author(s):  
Mingzheng Ge ◽  
Chunyan Cao ◽  
Gill M. Biesold ◽  
Christopher D. Sewell ◽  
Shu‐Meng Hao ◽  
...  

2006 ◽  
Vol 73 ◽  
pp. 109-119 ◽  
Author(s):  
Chris Stockdale ◽  
Michael Bruno ◽  
Helder Ferreira ◽  
Elisa Garcia-Wilson ◽  
Nicola Wiechens ◽  
...  

In the 30 years since the discovery of the nucleosome, our picture of it has come into sharp focus. The recent high-resolution structures have provided a wealth of insight into the function of the nucleosome, but they are inherently static. Our current knowledge of how nucleosomes can be reconfigured dynamically is at a much earlier stage. Here, recent advances in the understanding of chromatin structure and dynamics are highlighted. The ways in which different modes of nucleosome reconfiguration are likely to influence each other are discussed, and some of the factors likely to regulate the dynamic properties of nucleosomes are considered.


2021 ◽  
Vol 13 (15) ◽  
pp. 8421
Author(s):  
Yuan Gao ◽  
Jiandong Huang ◽  
Meng Li ◽  
Zhongran Dai ◽  
Rongli Jiang ◽  
...  

Uranium mining waste causes serious radiation-related health and environmental problems. This has encouraged efforts toward U(VI) removal with low cost and high efficiency. Typical uranium adsorbents, such as polymers, geopolymers, zeolites, and MOFs, and their associated high costs limit their practical applications. In this regard, this work found that the natural combusted coal gangue (CCG) could be a potential precursor of cheap sorbents to eliminate U(VI). The removal efficiency was modulated by chemical activation under acid and alkaline conditions, obtaining HCG (CCG activated with HCl) and KCG (CCG activated with KOH), respectively. The detailed structural analysis uncovered that those natural mineral substances, including quartz and kaolinite, were the main components in CCG and HCG. One of the key findings was that kalsilite formed in KCG under a mild synthetic condition can conspicuous enhance the affinity towards U(VI). The best equilibrium adsorption capacity with KCG was observed to be 140 mg/g under pH 6 within 120 min, following a pseudo-second-order kinetic model. To understand the improved adsorption performance, an adsorption mechanism was proposed by evaluating the pH of uranyl solutions, adsorbent dosage, as well as contact time. Combining with the structural analysis, this revealed that the uranyl adsorption process was mainly governed by chemisorption. This study gave rise to a utilization approach for CCG to obtain cost-effective adsorbents and paved a novel way towards eliminating uranium by a waste control by waste strategy.


2021 ◽  
Vol 22 (11) ◽  
pp. 5912
Author(s):  
Patricia Alvarez-Sieiro ◽  
Hendrik R. Sikkema ◽  
Bert Poolman

Many proteins have a multimeric structure and are composed of two or more identical subunits. While this can be advantageous for the host organism, it can be a challenge when targeting specific residues in biochemical analyses. In vitro splitting and re-dimerization to circumvent this problem is a tedious process that requires stable proteins. We present an in vivo approach to transform homodimeric proteins into apparent heterodimers, which then can be purified using two-step affinity-tag purification. This opens the door to both practical applications such as smFRET to probe the conformational dynamics of homooligomeric proteins and fundamental research into the mechanism of protein multimerization, which is largely unexplored for membrane proteins. We show that expression conditions are key for the formation of heterodimers and that the order of the differential purification and reconstitution of the protein into nanodiscs is important for a functional ABC-transporter complex.


Nanoscale ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 6373-6388
Author(s):  
Yanan Tang ◽  
Zhen Qin ◽  
Shengyan Yin ◽  
Hang Sun

This review summarizes the recent advances of transition metal oxide and chalcogenide-based antibacterial nanomaterials, with emphasis on their inactivation mechanisms and highlighting their practical applications.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 482
Author(s):  
Jae-Kwon Jo ◽  
Seung-Ho Seo ◽  
Seong-Eun Park ◽  
Hyun-Woo Kim ◽  
Eun-Ju Kim ◽  
...  

Obesity can be caused by microbes producing metabolites; it is thus important to determine the correlation between gut microbes and metabolites. This study aimed to identify gut microbiota-metabolomic signatures that change with a high-fat diet and understand the underlying mechanisms. To investigate the profiles of the gut microbiota and metabolites that changed after a 60% fat diet for 8 weeks, 16S rRNA gene amplicon sequencing and gas chromatography-mass spectrometry (GC-MS)-based metabolomic analyses were performed. Mice belonging to the HFD group showed a significant decrease in the relative abundance of Bacteroidetes but an increase in the relative abundance of Firmicutes compared to the control group. The relative abundance of Firmicutes, such as Lactococcus, Blautia, Lachnoclostridium, Oscillibacter, Ruminiclostridium, Harryflintia, Lactobacillus, Oscillospira, and Erysipelatoclostridium, was significantly higher in the HFD group than in the control group. The increased relative abundance of Firmicutes in the HFD group was positively correlated with fecal ribose, hypoxanthine, fructose, glycolic acid, ornithine, serum inositol, tyrosine, and glycine. Metabolic pathways affected by a high fat diet on serum were involved in aminoacyl-tRNA biosynthesis, glycine, serine and threonine metabolism, cysteine and methionine metabolism, glyoxylate and dicarboxylate metabolism, and phenylalanine, tyrosine, and trypto-phan biosynthesis. This study provides insight into the dysbiosis of gut microbiota and metabolites altered by HFD and may help to understand the mechanisms underlying obesity mediated by gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document