scholarly journals The Role of GH/IGF Axis in Dento-Alveolar Complex from Development to Aging and Therapeutics: A Narrative Review

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1181
Author(s):  
Kouassi Armel Koffi ◽  
Sophie Doublier ◽  
Jean-Marc Ricort ◽  
Sylvie Babajko ◽  
Ali Nassif ◽  
...  

The GH/IGF axis is a major regulator of bone formation and resorption and is essential to the achievement of normal skeleton growth and homeostasis. Beyond its key role in bone physiology, the GH/IGF axis has also major pleiotropic endocrine and autocrine/paracrine effects on mineralized tissues throughout life. This article aims to review the literature on GH, IGFs, IGF binding proteins, and their respective receptors in dental tissues, both epithelium (enamel) and mesenchyme (dentin, pulp, and tooth-supporting periodontium). The present review re-examines and refines the expression of the elements of the GH/IGF axis in oral tissues and their in vivo and in vitro mechanisms of action in different mineralizing cell types of the dento-alveolar complex including ameloblasts, odontoblasts, pulp cells, cementoblasts, periodontal ligament cells, and jaw osteoblasts focusing on cell-specific activities. Together, these data emphasize the determinant role of the GH/IGF axis in physiological and pathological development, morphometry, and aging of the teeth, the periodontium, and oral bones in humans, rodents, and other vertebrates. These advancements in oral biology have elicited an enormous interest among investigators to translate the fundamental discoveries on the GH/IGF axis into innovative strategies for targeted oral tissue therapies with local treatments, associated or not with materials, for orthodontics and the repair and regeneration of the dento-alveolar complex and oral bones.

Author(s):  
Mohammad H. Rashid ◽  
Thaiz F. Borin ◽  
Roxan Ara ◽  
Raziye Piranlioglu ◽  
Bhagelu R. Achyut ◽  
...  

AbstractMyeloid-derived suppressor cells (MDSCs) are an indispensable component of the tumor microenvironment (TME), and our perception regarding the role of MDSCs in tumor promotion is attaining extra layer of intricacy in every study. In conjunction with MDSC’s immunosuppressive and anti-tumor immunity, they candidly facilitate tumor growth, differentiation, and metastasis in several ways that yet to be explored. Alike any other cell types, MDSCs also release a tremendous amount of exosomes or nanovesicles of endosomal origin and partake in intercellular communications by dispatching biological macromolecules. There has not been any experimental study done to characterize the role of MDSCs derived exosomes (MDSC exo) in the modulation of TME. In this study, we isolated MDSC exo and demonstrated that they carry a significant amount of proteins that play an indispensable role in tumor growth, invasion, angiogenesis, and immunomodulation. We observed higher yield and more substantial immunosuppressive potential of exosomes isolated from MDSCs in the primary tumor area than those are in the spleen or bone marrow. Our in vitro data suggest that MDSC exo are capable of hyper activating or exhausting CD8 T-cells and induce reactive oxygen species production that elicits activation-induced cell death. We confirmed the depletion of CD8 T-cells in vivo by treating the mice with MDSC exo. We also observed a reduction in pro-inflammatory M1-macrophages in the spleen of those animals. Our results indicate that immunosuppressive and tumor-promoting functions of MDSC are also implemented by MDSC-derived exosomes which would open up a new avenue of MDSC research and MDSC-targeted therapy.


2018 ◽  
Vol 115 (20) ◽  
pp. 5253-5258 ◽  
Author(s):  
Hideyuki Yanai ◽  
Shiho Chiba ◽  
Sho Hangai ◽  
Kohei Kometani ◽  
Asuka Inoue ◽  
...  

IFN regulatory factor 3 (IRF3) is a transcription regulator of cellular responses in many cell types that is known to be essential for innate immunity. To confirm IRF3’s broad role in immunity and to more fully discern its role in various cellular subsets, we engineered Irf3-floxed mice to allow for the cell type-specific ablation of Irf3. Analysis of these mice confirmed the general requirement of IRF3 for the evocation of type I IFN responses in vitro and in vivo. Furthermore, immune cell ontogeny and frequencies of immune cell types were unaffected when Irf3 was selectively inactivated in either T cells or B cells in the mice. Interestingly, in a model of lipopolysaccharide-induced septic shock, selective Irf3 deficiency in myeloid cells led to reduced levels of type I IFN in the sera and increased survival of these mice, indicating the myeloid-specific, pathogenic role of the Toll-like receptor 4–IRF3 type I IFN axis in this model of sepsis. Thus, Irf3-floxed mice can serve as useful tool for further exploring the cell type-specific functions of this transcription factor.


2019 ◽  
Vol 20 (6) ◽  
pp. 1318 ◽  
Author(s):  
Alexandra Kupke ◽  
Sabrina Becker ◽  
Konstantin Wewetzer ◽  
Barbara Ahlemeyer ◽  
Markus Eickmann ◽  
...  

Mammalian Bornavirus (BoDV-1) typically causes a fatal neurologic disorder in horses and sheep, and was recently shown to cause fatal encephalitis in humans with and without transplant reception. It has been suggested that BoDV-1 enters the central nervous system (CNS) via the olfactory pathway. However, (I) susceptible cell types that replicate the virus for successful spread, and (II) the role of olfactory ensheathing cells (OECs), remained unclear. To address this, we studied the intranasal infection of adult rats with BoDV-1 in vivo and in vitro, using olfactory mucosal (OM) cell cultures and the cultures of purified OECs. Strikingly, in vitro and in vivo, viral antigen and mRNA were present from four days post infection (dpi) onwards in the olfactory receptor neurons (ORNs), but also in all other cell types of the OM, and constantly in the OECs. In contrast, in vivo, BoDV-1 genomic RNA was only detectable in adult and juvenile ORNs, nerve fibers, and in OECs from 7 dpi on. In vitro, the rate of infection of OECs was significantly higher than that of the OM cells, pointing to a crucial role of OECs for infection via the olfactory pathway. Thus, this study provides important insights into the transmission of neurotropic viral infections with a zoonotic potential.


2000 ◽  
Vol 100 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Michael J. HICKEY

Constitutively produced nitric oxide released by endothelial cells has been shown to act as an endogenous agent which inhibits the rolling and adhesion of leucocytes in the microcirculation. However, during various types of inflammation, expression of the inducible form of nitric oxide synthase (iNOS) can dramatically increase the amount of nitric oxide present in tissues. Furthermore, as iNOS can be expressed by a wide variety of cell types, the distribution of nitric oxide is likely to be altered relative to that in unstimulated tissue. Under these conditions, it is less well understood whether iNOS-derived nitric oxide retains the anti-adhesive capabilities of constitutively produced nitric oxide. This review summarizes work done to examine this issue. Three main approaches have been used. In vitro studies have examined the role of iNOS in adhesive interactions between stimulated endothelial cells and leucocytes, providing evidence of an anti-adhesive effect of iNOS. In addition, the role of iNOS has been examined in vivo in animal models of inflammation using pharmacological iNOS inhibitors. These experiments were extended by the advent of the iNOS-deficient (iNOS-/-) mouse. Intravital microscopy studies of these mice have indicated that, under conditions of low-dose endotoxaemia, iNOS-derived nitric oxide can inhibit leucocyte rolling and adhesion. The potential mechanisms for these effects are discussed. In contrast, several other studies have observed either no effect or an enhancing effect of iNOS on inflammatory leucocyte recruitment. Taken together, these studies suggest that the importance of iNOS in modulating leucocyte recruitment can vary according to the type of inflammatory response.


2015 ◽  
Vol 224 (3) ◽  
pp. R139-R159 ◽  
Author(s):  
Patricia Joseph-Bravo ◽  
Lorraine Jaimes-Hoy ◽  
Jean-Louis Charli

Energy homeostasis relies on a concerted response of the nervous and endocrine systems to signals evoked by intake, storage, and expenditure of fuels. Glucocorticoids (GCs) and thyroid hormones are involved in meeting immediate energy demands, thus placing the hypothalamo–pituitary–thyroid (HPT) and hypothalamo–pituitary–adrenal axes at a central interface. This review describes the mode of regulation of hypophysiotropic TRHergic neurons and the evidence supporting the concept that they act as metabolic integrators. Emphasis has been be placed on i) the effects of GCs on the modulation of transcription ofTrhin vivoandin vitro, ii) the physiological and molecular mechanisms by which acute or chronic situations of stress and energy demands affect the activity of TRHergic neurons and the HPT axis, and iii) the less explored role of non-hypophysiotropic hypothalamic TRH neurons. The partial evidence gathered so far is indicative of a contrasting involvement of distinct TRH cell types, manifested through variability in cellular phenotype and physiology, including rapid responses to energy demands for thermogenesis or physical activity and nutritional status that may be modified according to stress history.


2021 ◽  
Author(s):  
Amada D. Caliz ◽  
Hyung-Jin Yoo ◽  
Anastassiia Vertii ◽  
Cathy Tournier ◽  
Roger J. Davis ◽  
...  

Mitogen kinase kinase 4 (MKK4) and Mitogen kinase kinase 7 (MKK7) are members of the MAP2K family which can activate downstream mitogen-activated protein kinases (MAPKs). MKK4 has been implicated in the activation of both, c-Jun N-terminal Kinase (JNK) and p38 MAPK, whereas MKK7 only activates JNK in response to different stimuli. The stimuli as well as cell type determine the choice of MAP2K member that mediates the response. In a variety of cell types, the MKK7 contributes to the activation of downstream MAPKs, JNK, which is known to regulate essential cellular processes, such as cell death, differentiation, stress response, and cytokine secretion. Previous studies have implicated the role of MKK7 in stress signaling pathways and cytokine production. However, little is known about the degree to which MKK7 and MKK4 contributes to innate immune response in macrophages as well as during inflammation in vivo. To address this question and elucidate the role of MKK7 and MKK4 in macrophage and in vivo, we developed MKK7- and MKK4-deficient mouse models with tamoxifen-inducible Rosa26 CreERT. This study reports that MKK7 is required for JNK activation both in vitro and in vivo. Additionally, we demonstrated that MKK7 in macrophages is necessary for LPS induced cytokine production and migration which appears to be a major contributor to the inflammatory response in vivo. Whereas MKK4 plays a significant but minor role in cytokine production in vivo.


2020 ◽  
Vol 117 (23) ◽  
pp. 12636-12642 ◽  
Author(s):  
Magdalena Wojtas ◽  
Alexander J. Lausch ◽  
Eli D. Sone

Mammalian teeth are attached to the jawbone through an exquisitely controlled mineralization process: unmineralized collagen fibers of the periodontal ligament anchor directly into the outer layer of adjoining mineralized tissues (cementum and bone). The sharp interface between mineralized and nonmineralized collagenous tissues makes this an excellent model to study the mechanisms by which extracellular matrix macromolecules control collagen mineralization. While acidic phosphoproteins, localized in the mineralized tissues, play key roles in control of mineralization, the role of glycosaminoglycans (GAGs) is less clear. As several proteoglycans are found only in the periodontal ligament, it has been hypothesized that these inhibit mineralization of collagen in this tissue. Here we used an in vitro model based on remineralization of mouse dental tissues to determine the role of matrix GAGs in control of mineralization. GAGs were selectively removed from demineralized mouse periodontal sections via enzymatic digestion. Proteomic analysis confirmed that enzymatic GAG removal does not significantly alter protein content. Analysis of remineralized tissue sections by transmission electron microscopy (TEM) shows that GAG removal reduced the rate of remineralization in mineralized tissues compared to the untreated control, while the ligament remained unmineralized. Protein removal with trypsin also reduced the rate of mineralization, but to a lesser extent than GAG removal, despite a much larger effect on protein content. These results indicate that GAGs promote mineralization in mineralized dental tissues rather than inhibiting mineral formation in the ligament, which may have broader implications for understanding control of collagen mineralization in connective tissues.


Development ◽  
1987 ◽  
Vol 100 (1) ◽  
pp. 95-105
Author(s):  
JH Russ ◽  
JD Horton

This paper describes in vitro and in vivo attempts to deplete the 4- to 8-month-old Xenopus laevis (J strain) thymus of its lymphocyte compartment. Gamma irradiation (2-3000 rad) of the excised thymus, followed by two weeks in organ culture, is effective in removing lymphocytes, but causes drastic reduction in size and loss of normal architecture. In contrast, in vivo whole-body irradiation (3000 rad) and subsequent in situ residence for 8-14 days proves successful in providing a lymphocyte-depleted froglet thymus without loss of cortical and medullary zones. In vivo-irradiated thymuses are about half normal size, lack cortical lymphocytes, but still retain some medullary thymocytes; they show no signs of lymphocyte regeneration when subsequently organ cultured for 2 weeks. Light microscopy of 1 micron, plastic-embedded sections and electron microscopy reveal that a range of thymic stromal cell types are retained and that increased numbers of cysts, mucous and myoid cells are found in the thymus following whole-body irradiation. In vivo-irradiated thymuses are therefore suitable for implantation studies exploring the role of thymic stromal cells in tolerance induction of differentiating T lymphocytes.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Rahul Rai ◽  
Asish K Ghosh ◽  
Layton H Smith ◽  
Douglas E Vaughan

Background: Apelinergic signaling is a recently discovered GPCR mediated pathway. Endothelial cells are the main source of endogenous apelin (apln) while apelin receptor (aplnr) is present on multiple cell types. Since the role of endogenous apelinergic pathway within the context of senescence is largely unknown, we ask if levels of apln- aplnr vary with aging. We also investigate the effects of downregulated apln- aplnr on cellular and organismal aging. Approach and Results: To assess variations in endogenous apln- aplnr with aging, we compared their levels in 1 month (young) and 1 year old (old) WT mice. We noticed significant downregulation of apln- aplnr with chronological senescence in multiple tissues. Expression of apelin was also reduced with replicative senescence of endothelial cells. L-NAME administration, a model of stress induced senescence, also repressed aortic and cardiac apln. To address the mechanism involved in downregulation of apln- aplnr, we administered young wild type mice with Ang II. After a week of Ang II, there was significant downregulation of aortic apln and aplnr. Ang II and TGF-β also repressed apln and aplnr in vitro . Next we investigated the effects of downregulated apln on endothelial cells. In response to shRNA mediated apelin knockdown, cells exhibited slower proliferation and upregulated senescence associated markers. We observed similar results when endothelial aplnr was blocked with an antagonist, ML221. In addition, apln and aplnr deficient mice also exhibited features of cardiovascular aging, including ventricular hypertrophy and lower EF. Importantly, aplnr deficient mice at eight months of age were also hypertensive. Conclusion: We provide a systematic assessment of senescence associated variation in levels of apln- aplnr. We demonstrate the role of Ang II- TGF-β axis in downregulating apln- aplnr during chronological and stress induced senescence in vivo and in vitro . We propose a novel model of Ang II- TGF-β induced senescence. Where in, with aging Ang II and TGF-β repress endogenous apln- aplnr. Downregulation of endogenous apln- aplnr axis decreases beneficial “youthful” effects of apelin, resulting in endothelial dysfunction and accelerated organismal aging.


2003 ◽  
Vol 178 (2) ◽  
pp. 177-193 ◽  
Author(s):  
R Zhou ◽  
D Diehl ◽  
A Hoeflich ◽  
H Lahm ◽  
E Wolf

IGFs have multiple functions regarding cellular growth, survival and differentiation under different physiological and pathological conditions. IGF effects are modulated systemically and locally by six high-affinity IGF-binding proteins (IGFBP-1 to -6). Despite their structural similarity, each IGFBP has unique properties and exhibits specific functions. IGFBP-4, the smallest IGFBP, exists in both non-glycosylated and N-glycosylated forms in all biological fluids. It is expressed by a wide range of cell types and tIssues, and its expression is regulated by different mechanisms in a cell type-specific manner. IGFBP-4 binds IGF-I and IGF-II with similar affinities and inhibits their actions under almost all in vitro and in vivo conditions. In this review, we summarize the available data regarding the following aspects of IGFBP-4: genomic organization, protein structure-function relationship, expression and its regulation, as well as IGF-dependent and -independent actions. The biological significance of IGFBP-4 for reproductive physiology, bone formation, renal pathophysiology and cancer is discussed.


Sign in / Sign up

Export Citation Format

Share Document