scholarly journals DNMT3A and DNMT3B Targeting as an Effective Radiosensitizing Strategy in Embryonal Rhabdomyosarcoma

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2956
Author(s):  
Simona Camero ◽  
Giulia Vitali ◽  
Paola Pontecorvi ◽  
Simona Ceccarelli ◽  
Eleni Anastasiadou ◽  
...  

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in childhood. Recently, we demonstrated the overexpression of both DNA methyltransferase 3A (DNMT3A) and 3B (DNMT3B) in RMS tumour biopsies and cell lines compared to normal skeletal muscle. Radiotherapy may often fail due to the abnormal expression of some molecules able to drive resistance mechanisms. The aim of this study was to analyse the involvement of DNMT3A and DNMT3B in radioresistance in RMS. RNA interference experiments against DNMT3A/3B were performed in embryonal RMS cells, upon ionizing radiation (IR) exposure and the effects of the combined treatment on RMS cells were analysed. DNMT3A and DNMT3B knocking down increased the sensitivity of RMS cells to IR, as indicated by the drastic decrease of colony formation ability. Interestingly, DNMT3A/3B act in two different ways: DNMT3A silencing triggers the cellular senescence program by up-regulating p16 and p21, whilst DNMT3B depletion induces significant DNA damage and impairs the DNA repair machinery (ATM, DNA-PKcs and Rad51 reduction). Our findings demonstrate for the first time that DNMT3A and DNMT3B overexpression may contribute to radiotherapy failure, and their inhibition might be a promising radiosensitizing strategy, mainly in the treatment of patients with metastatic or recurrent RMS tumours.

PLoS Genetics ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. e1009325
Author(s):  
Lewin Small ◽  
Lars R. Ingerslev ◽  
Eleonora Manitta ◽  
Rhianna C. Laker ◽  
Ann N. Hansen ◽  
...  

In response to physical exercise and diet, skeletal muscle adapts to energetic demands through large transcriptional changes. This remodelling is associated with changes in skeletal muscle DNA methylation which may participate in the metabolic adaptation to extracellular stimuli. Yet, the mechanisms by which muscle-borne DNA methylation machinery responds to diet and exercise and impacts muscle function are unknown. Here, we investigated the function of de novo DNA methylation in fully differentiated skeletal muscle. We generated muscle-specific DNA methyltransferase 3A (DNMT3A) knockout mice (mD3AKO) and investigated the impact of DNMT3A ablation on skeletal muscle DNA methylation, exercise capacity and energy metabolism. Loss of DNMT3A reduced DNA methylation in skeletal muscle over multiple genomic contexts and altered the transcription of genes known to be influenced by DNA methylation, but did not affect exercise capacity and whole-body energy metabolism compared to wild type mice. Loss of DNMT3A did not alter skeletal muscle mitochondrial function or the transcriptional response to exercise however did influence the expression of genes involved in muscle development. These data suggest that DNMT3A does not have a large role in the function of mature skeletal muscle although a role in muscle development and differentiation is likely.


2020 ◽  
Vol 20 (10) ◽  
pp. 886-907 ◽  
Author(s):  
Ankur Vaidya ◽  
Shweta Jain ◽  
Sanjeev Sahu ◽  
Pankaj Kumar Jain ◽  
Kamla Pathak ◽  
...  

Traditional cancer treatment includes surgery, chemotherapy, radiotherapy and immunotherapy that are clinically beneficial, but are associated with drawbacks such as drug resistance and side effects. In quest for better treatment, many new molecular targets have been introduced in the last few decades. Finding new molecular mechanisms encourages researchers to discover new anticancer agents. Exploring the mechanism of action also facilitates anticipation of potential resistance mechanisms and optimization of rational combination therapies. The write up describes the leading molecular mechanisms for cancer therapy, including mTOR, tyrosine Wee1 kinase (WEE1), Janus kinases, PI3K/mTOR signaling pathway, serine/threonine protein kinase AKT, checkpoint kinase 1 (Chk1), maternal embryonic leucine-zipper kinase (MELK), DNA methyltransferase I (DNMT1), poly (ADP-ribose) polymerase (PARP)-1/-2, sphingosine kinase-2 (SK2), pan-FGFR, inhibitor of apoptosis (IAP), murine double minute 2 (MDM2), Bcl-2 family protein and reactive oxygen species 1 (ROS1). Additionally, the manuscript reviews the anticancer drugs currently under clinical trials.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 481
Author(s):  
Gemma G. Martínez-García ◽  
Raúl F. Pérez ◽  
Álvaro F. Fernández ◽  
Sylvere Durand ◽  
Guido Kroemer ◽  
...  

Autophagy is an essential protective mechanism that allows mammalian cells to cope with a variety of stressors and contributes to maintaining cellular and tissue homeostasis. Due to these crucial roles and also to the fact that autophagy malfunction has been described in a wide range of pathologies, an increasing number of in vivo studies involving animal models targeting autophagy genes have been developed. In mammals, total autophagy inactivation is lethal, and constitutive knockout models lacking effectors of this route are not viable, which has hindered so far the analysis of the consequences of a systemic autophagy decline. Here, we take advantage of atg4b−/− mice, an autophagy-deficient model with only partial disruption of the process, to assess the effects of systemic reduction of autophagy on the metabolome. We describe for the first time the metabolic footprint of systemic autophagy decline, showing that impaired autophagy results in highly tissue-dependent alterations that are more accentuated in the skeletal muscle and plasma. These changes, which include changes in the levels of amino-acids, lipids, or nucleosides, sometimes resemble those that are frequently described in conditions like aging, obesity, or cardiac damage. We also discuss different hypotheses on how impaired autophagy may affect the metabolism of several tissues in mammals.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Helena de Castro e Gloria ◽  
Laura Jesuíno Nogueira ◽  
Patrícia Bencke Grudzinski ◽  
Paola Victória da Costa Ghignatti ◽  
Temenouga Nikolova Guecheva ◽  
...  

Abstract Background The advances in colorectal cancer (CRC) treatment include the identification of deficiencies in Mismatch Repair (MMR) pathway to predict the benefit of adjuvant 5-fluorouracil (5-FU) and oxaliplatin for stage II CRC and immunotherapy. Defective MMR contributes to chemoresistance in CRC. A growing body of evidence supports the role of Poly-(ADP-ribose) polymerase (PARP) inhibitors, such as Olaparib, in the treatment of different subsets of cancer beyond the tumors with homologous recombination deficiencies. In this work we evaluated the effect of Olaparib on 5-FU cytotoxicity in MMR-deficient and proficient CRC cells and the mechanisms involved. Methods Human colon cancer cell lines, proficient (HT29) and deficient (HCT116) in MMR, were treated with 5-FU and Olaparib. Cytotoxicity was assessed by MTT and clonogenic assays, apoptosis induction and cell cycle progression by flow cytometry, DNA damage by comet assay. Adhesion and transwell migration assays were also performed. Results Our results showed enhancement of the 5-FU citotoxicity by Olaparib in MMR-deficient HCT116 colon cancer cells. Moreover, the combined treatment with Olaparib and 5-FU induced G2/M arrest, apoptosis and polyploidy in these cells. In MMR proficient HT29 cells, the Olaparib alone reduced clonogenic survival, induced DNA damage accumulation and decreased the adhesion and migration capacities. Conclusion Our results suggest benefits of Olaparib inclusion in CRC treatment, as combination with 5-FU for MMR deficient CRC and as monotherapy for MMR proficient CRC. Thus, combined therapy with Olaparib could be a strategy to overcome 5-FU chemotherapeutic resistance in MMR-deficient CRC.


2021 ◽  
Vol 22 (8) ◽  
pp. 3845
Author(s):  
Sarah Teuber-Hanselmann ◽  
Karl Worm ◽  
Nicole Macha ◽  
Andreas Junker

Quantifying O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation plays an essential role in assessing the potential efficacy of alkylating agents in the chemotherapy of malignant gliomas. MGMT promoter methylation is considered to be a characteristic of subgroups of certain malignancies but has also been described in various peripheral inflammatory diseases. However, MGMT promoter methylation levels have not yet been investigated in non-neoplastic brain diseases. This study demonstrates for the first time that one can indeed detect slightly enhanced MGMT promoter methylation in individual cases of inflammatory demyelinating CNS diseases such as multiple sclerosis and progressive multifocal leucencephalopathy (PML), as well as in other demyelinating diseases such as central pontine and exptrapontine myelinolysis, and diseases with myelin damage such as Wallerian degeneration. In this context, we identified a reduction in the expression of the demethylase TET1 as a possible cause for the enhanced MGMT promoter methylation. Hence, we show for the first time that MGMT hypermethylation occurs in chronic diseases that are not strictly associated to distinct pathogens, oncogenic viruses or neoplasms but that lead to damage of the myelin sheath in various ways. While this gives new insights into epigenetic and pathophysiological processes involved in de- and remyelination, which might offer new therapeutic opportunities for demyelinating diseases in the future, it also reduces the specificity of MGMT hypermethylation as a tumor biomarker.


2019 ◽  
Vol 20 (23) ◽  
pp. 6026
Author(s):  
Hwani Ryu ◽  
Hyo Jeong Kim ◽  
Jie-Young Song ◽  
Sang-Gu Hwang ◽  
Jae-Sung Kim ◽  
...  

We previously reported on a poly (ADP-ribose) polymerase (PARP) 1/2 inhibitor N-(3-(hydroxycarbamoyl)phenyl)carboxamide (designated KJ-28d), which increased the death of human ovarian cancer BRCA1-deficient SNU-251 cells. In the present study, we further investigated the antitumor activities of KJ-28d in BRCA-proficient non-small cell lung cancer (NSCLC) cells to expand the use of PARP inhibitors. KJ-28d significantly inhibited the growth of NSCLC cells in vitro and in vivo, and induced DNA damage and reactive oxygen species in A549 and H1299 cells. Combined treatment with KJ-28d and ionizing radiation led to increased DNA damage responses in A549 and H1299 cells compared to KJ-28d or ionizing radiation alone, resulting in apoptotic cell death. Moreover, the combination of KJ-28d plus a DNA-damaging therapeutic agent (carboplatin, cisplatin, paclitaxel, or doxorubicin) synergistically inhibited cell proliferation, compared to either drug alone. Taken together, the findings demonstrate the potential of KJ-28d as an effective anti-cancer therapeutic agent for BRCA-deficient and -proficient cancer cells. KJ-28d might have potential as an adjuvant when used in combination with radiotherapy or DNA-damaging agents, pending further investigations.


2012 ◽  
Vol 21 (11) ◽  
pp. 2407-2424 ◽  
Author(s):  
Jin-Kyu Park ◽  
Mi-Ran Ki ◽  
Eun-Mi Lee ◽  
Ah-Young Kim ◽  
Sang-Young You ◽  
...  

Recently, adipose tissue-derived stem cells (ASCs) were emerged as an alternative, abundant, and easily accessible source of stem cell therapy. Previous studies revealed losartan (an angiotensin II type I receptor blocker) treatment promoted the healing of skeletal muscle by attenuation of the TGF-β signaling pathway, which inhibits muscle differentiation. Therefore, we hypothesized that a combined therapy using ASCs and losartan might dramatically improve the muscle remodeling after muscle injury. To determine the combined effect of losartan with ASC transplantation, we created a muscle laceration mouse model. EGFP-labeled ASCs were locally transplanted to the injured gastrocnemius muscle after muscle laceration. The dramatic muscle regeneration and the remarkably inhibited muscular fibrosis were observed by combined treatment. Transplanted ASCs fused with the injured or differentiating myofibers. Myotube formation was also enhanced by ASC+ satellite coculture and losartan treatment. Thus, the present study indicated that ASC transplantation effect for skeletal muscle injury can be dramatically improved by losartan treatment inducing better niche.


Sign in / Sign up

Export Citation Format

Share Document