scholarly journals Chemokines and Innate Lymphoid Cells in Skin Inflammation

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3074
Author(s):  
Zhengwang Sun ◽  
Ravi Vattepu ◽  
Songfa Zhang

As the outermost barrier, skin plays an important role in protecting our bodies against outside invasion. Under stable conditions or during inflammation, leukocytes migration is essential for restoring homeostasis in the skin. Immune cells trafficking is orchestrated by chemokines; leukocytes express receptors that bind to chemokines and trigger migration. The homeostasis of the immune ecosystem is an extremely complicated dynamic process that requires the cooperation of innate and adaptive immune cells. Emerging studies have been shedding a light on the unique characteristics of skin-resident innate lymphoid cells (ILCs). In this review, we discuss how chemokines orchestrate skin ILCs trafficking and contribute to tissue homeostasis and how abnormal chemokine–chemokine receptor interactions contribute to and augment skin inflammation, as seen in conditions such as contact hypersensitivity, atopic dermatitis, and psoriasis.

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Fabian Flores-Borja ◽  
Sheeba Irshad ◽  
Peter Gordon ◽  
Felix Wong ◽  
Ibrahim Sheriff ◽  
...  

Our knowledge and understanding of the tumor microenvironment (TME) have been recently expanded with the recognition of the important role of innate lymphoid cells (ILC). Three different groups of ILC have been described based on their ability to produce cytokines that mediate the interactions between innate and adaptive immune cells in a variety of immune responses in infection, allergy, and autoimmunity. However, recent evidence from experimental models and clinical studies has demonstrated that ILC contribute to the mechanisms that generate suppressive or tolerant environments that allow tumor regression or progression. Defining the complex network of interactions and crosstalk of ILC with other immune cells and understanding the specific contributions of each type of ILC leading to tumor development will allow the manipulation of their function and will be important to develop new interventions and therapeutic strategies.


2022 ◽  
Vol 11 (2) ◽  
pp. 400
Author(s):  
Aleksandra Kałużna ◽  
Paweł Olczyk ◽  
Katarzyna Komosińska-Vassev

Ulcerative colitis (UC) is a chronic inflammatory disease with an underlying excessive immune response directed against resident microbiota and/or dietary antigens. Both innate and adaptive immune cells play a crucial role in the pathogenesis of UC. In the case of innate immune response cells, neutrophils, dendritic cells, macrophages have a crucial impact on the development of the disease, as well as innate lymphoid cells, which have received a particular attention in recent years. On the other hand, mechanisms of the adaptive immune response involve cells such as: cytotoxic lymphocytes, regulatory lymphocytes Treg, or helper lymphocytes Th–Th2, Th9, Th17, Th22, among which significant discoveries about Th9 and Th17 lymphocytes have been made in recent years. Due to the presence of antibodies directed against resident microbiota or one’s own tissues, the influence of B lymphocytes on the development of UC is also highlighted. Additionally, the impact of cytokines on shaping the immune response as well as sustaining inflammation seems to be crucial. This review briefly describes the current state of knowledge about the involvement of the innate and adaptive immune systems in the pathogenesis of UC. The review is based on personal selection of literature that were retrieved by a selective search in PubMed using the terms “ulcerative colitis” and “pathogenesis of ulcerative colitis”. It included systematic reviews, meta-analyses and clinical trials. Our knowledge of the involvement of the immune system in the pathophysiology of IBD has advanced rapidly over the last two decades, leading to the development of several immune-targeted treatments with a biological source, known as biologic agents.


Author(s):  
Thea Magrone ◽  
Manrico Magrone ◽  
Matteo Antonio Russo ◽  
Emilio Jirillo

Background: Platelets are cellular fragments derived from bone-marrow megacaryocytes and they are mostly involved in haemostasis and coagulation. However, according to recent data, platelets are able to perform novel immune functions. In fact, they possess a receptorial armamentarium on their membrane for interacting with innate and adaptive immune cells. In addition, platelets also secrete granules which contain cytokines and chemokines for activating and recruiting even distant immune cells. Objectives: The participation of platelets in inflammatory processes will be discussed also in view of their dual role in terms of triggering or resolving inflammation. Involvement of platelets in disease will be illustrated, pointing to their versatile function to either up- or down-regulate pathological mechanisms. Finally, despite the availability of some anti-platelet agents, such as aspirin, dietary manipulation of platelet function is currently investigated. In this regard, special emphasis will be placed on dietary omega-3 polyunsaturated fatty acids (PUFAs) and polyphenol effects on platelets. Conclusion: Platelets play a dual role in inflammatory-immune-mediated diseases either activating or deactivating immune cells. Diet based on substances, such as omega-3 PUFAs and polyphenols, may act as a modulator of platelet function, even if more clinical trials are needed to corroborate such a contention.


Open Biology ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 170006 ◽  
Author(s):  
B. Calì ◽  
B. Molon ◽  
A. Viola

Host immunity plays a central and complex role in dictating tumour progression. Solid tumours are commonly infiltrated by a large number of immune cells that dynamically interact with the surrounding microenvironment. At first, innate and adaptive immune cells successfully cooperate to eradicate microcolonies of transformed cells. Concomitantly, surviving tumour clones start to proliferate and harness immune responses by specifically hijacking anti-tumour effector mechanisms and fostering the accumulation of immunosuppressive immune cell subsets at the tumour site. This pliable interplay between immune and malignant cells is a relentless process that has been concisely organized in three different phases: elimination, equilibrium and escape. In this review, we aim to depict the distinct immune cell subsets and immune-mediated responses characterizing the tumour landscape throughout the three interconnected phases. Importantly, the identification of key immune players and molecules involved in the dynamic crosstalk between tumour and immune system has been crucial for the introduction of reliable prognostic factors and effective therapeutic protocols against cancers.


2010 ◽  
Vol 90 ◽  
pp. 395
Author(s):  
A. S. Tjon ◽  
T. Tha-In ◽  
H. J. Metselaar ◽  
L. V.D. Laan ◽  
Z. M. Groothuismink ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Holger Garn ◽  
Daniel Piotr Potaczek ◽  
Petra Ina Pfefferle

During its 30 years history, the Hygiene Hypothesis has shown itself to be adaptable whenever it has been challenged by new scientific developments and this is a still a continuously ongoing process. In this regard, the mini review aims to discuss some selected new developments in relation to their impact on further fine-tuning and expansion of the Hygiene Hypothesis. This will include the role of recently discovered classes of innate and adaptive immune cells that challenges the old Th1/Th2 paradigm, the applicability of the Hygiene Hypothesis to newly identified allergy/asthma phenotypes with diverse underlying pathomechanistic endotypes, and the increasing knowledge derived from epigenetic studies that leads to better understanding of mechanisms involved in the translation of environmental impacts on biological systems. Further, we discuss in brief the expansion of the Hygiene Hypothesis to other disease areas like psychiatric disorders and cancer and conclude that the continuously developing Hygiene Hypothesis may provide a more generalized explanation for health burden in highly industrialized countries also relation to global changes.


2020 ◽  
Author(s):  
Luca Pangrazzi ◽  
Erin Naismith ◽  
Carina Miggitsch ◽  
Jose’ Antonio Carmona Arana ◽  
Michael Keller ◽  
...  

Abstract Background. Obesity has been associated with chronic inflammation and oxidative stress. Both conditions play a determinant role in the pathogenesis of age-related diseases, such as immunosenescence. Adipose tissue can modulate the function of the immune system with the secretion of molecules influencing the phenotype of immune cells. The importance of the bone marrow (BM) in the maintenance of antigen-experienced adaptive immune cells has been documented in mice. Recently, some groups have investigated the survival of effector/memory T cells in the human BM. Despite this, whether high body mass index (BMI) may affect immune cells in the BM and the production of molecules supporting the maintenance of these cells it is unknown.Methods. Using flow cytometry, the frequency and the phenotype of immune cell populations were measured in paired BM and PB samples obtained from persons with different BMI. Furthermore, the expression of BM cytokines was assessed. The influence of cytomegalovirus (CMV) on T cell subsets was additionally considered, dividing the donors into the CMV- and CMV+ groups.Results. Our study suggests that increased BMI may affect both the maintenance and the phenotype of adaptive immune cells in the BM. While the BM levels of IL-15 and IL-6, supporting the survival of highly differentiated T cells, and oxygen radicals increased in overweight persons, the production of IFNγ and TNF by CD8+ T cells was reduced. In addition, the frequency of B cells and CD4+ T cells positively correlated with BMI in the BM of CMV- persons. Finally, the frequency of several T cell subsets, and the expression of senescence/exhaustion markers within these subpopulations, were affected by BMI. In particular, the levels of bona fide memory T cells may be reduced in overweight persons.Conclusion. Our work suggests that, in addition to aging and CMV, obesity may represent an additional risk factor for immunosenescence in adaptive immune cells. Metabolic interventions may help in improving the fitness of the immune system in the elderly.


Sign in / Sign up

Export Citation Format

Share Document