scholarly journals The Longevity-Associated Variant of BPIFB4 Reduces Senescence in Glioma Cells and in Patients’ Lymphocytes Favoring Chemotherapy Efficacy

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 294
Author(s):  
Annibale Alessandro Puca ◽  
Valentina Lopardo ◽  
Francesco Montella ◽  
Paola Di Pietro ◽  
Daniela Cesselli ◽  
...  

Glioblastoma (GBM) is the most common primary brain cancer with the median age at diagnosis around 64 years, thus pointing to aging as an important risk factor. Indeed, aging, by increasing the senescence burden, is configured as a negative prognostic factor for GBM stage. Furthermore, several anti-GBM therapies exist, such as temozolomide (TMZ) and etoposide (ETP), that unfortunately trigger senescence and the secretion of proinflammatory senescence-associated secretory phenotype (SASP) factors that are responsible for the improper burst of (i) tumorigenesis, (ii) cancer metastasis, (iii) immunosuppression, and (iv) tissue dysfunction. Thus, adjuvant therapies that limit senescence are urgently needed. The longevity-associated variant (LAV) of the bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4) gene previously demonstrated a modulatory activity in restoring age-related immune dysfunction and in balancing the low-grade inflammatory status of elderly people. Based on the above findings, we tested LAV-BPIFB4 senotherapeutic effects on senescent glioblastoma U87-MG cells and on T cells from GBM patients. We interrogated SA-β-gal and HLA-E senescence markers, SASP factors, and proliferation and apoptosis assays. The results highlighted a LAV-BPIFB4 remodeling of the senescent phenotype of GBM cells, enhancement of their sensitivity to temozolomide and a selective reduction of the T cells’ senescence from GBM patients. Overall, these findings candidate LAV-BPIFB4 as an adjuvant therapy for GBM.

2018 ◽  
Vol 25 (11) ◽  
pp. 1294-1310 ◽  
Author(s):  
Raffaella Mastrocola ◽  
Manuela Aragno ◽  
Giuseppe Alloatti ◽  
Massimo Collino ◽  
Claudia Penna ◽  
...  

In the last decades, the extension of life expectancy and the increased consumption of foods rich in saturated fats and added sugars have exposed the general population to emerging health problems. The prevalence of metabolic syndrome (MS), composed of a cluster of factors as obesity, dyslipidemia, hyperglycemia, and hypertension, is rapidly increasing in industrialized and developing countries leading to precocious onset of age-related diseases. Indeed, oxidative stress, accumulation of advanced glycation endproducts, and a chronic low-grade inflammation are common features of MS and physiological ageing. In particular, the entire set of MS factors contributes to the development of an inflammatory status named metaflammation, which has been associated with activation of early innate immune response through the assembling of the multiprotein complex inflammasome. The most investigated family of inflammasome platforms is the NOD-like receptor pyridine containing (NLRP) 3, which is activated by several exogenous and endogenous stimuli, leading to the sequential cleavage of caspase-1 and IL-1β, followed by secretion of active IL-1β. We here collect the most recent findings on NLRP3 activation in MS providing evidence of its central role in disease progression and organ dysfunction in target tissues of metaflammation, in particular in cardiovascular, hepatic and renal complications, with a focus on oxidative stress and advanced glycation endproducts. A wide overview of the most promising strategies for the modulation of NLRP3 activation and related metabolic repercussions is also provided, since the finding of specific pharmacological tools is an urgent requirement to reduce the social and economic burden of MS- and elderly-associated diseases.


2019 ◽  
Vol 47 (4) ◽  
pp. 1165-1172 ◽  
Author(s):  
Paul G. Shiels ◽  
Sarah Buchanan ◽  
Colin Selman ◽  
Peter Stenvinkel

Abstract Ageing is a process of decline in physiological function and capability over time. It is an anticipated major burden on societal health-care costs due to an increasingly aged global population. Accelerated biological ageing is a feature of age-related morbidities, which also appear to share common underpinning features, including low-grade persistent inflammation, phosphate toxicity, diminished Nrf2 activity, a depleted metabolic capability, depressed mitochondrial biogenesis and a low diversity gut microbiome. Social, psychological, lifestyle and nutritional risk factors can all influence the trajectory of age-related health, as part of an individual's exposome, which reflects the interplay between the genome and the environment. This is manifest as allostatic (over)load reflecting the burden of lifestyle/disease at both a physiological and molecular level. In particular, age-related genomic methylation levels and inflammatory status reflect exposome differences. These features may be mediated by changes in microbial diversity. This can drive the generation of pro-inflammatory factors, such as TMAO, implicated in the ‘diseasome’ of ageing. Additionally, it can be influenced by the ‘foodome’, via nutritional differences affecting the availability of methyl donors required for maintenance of the epigenome and by the provision of nutritionally derived Nrf2 agonists. Both these factors influence age-related physiological resilience and health. This offers novel insights into possible interventions to improve health span, including a rage of emerging senotherapies and simple modifications of the nutritional and environmental exposome. In essence, the emerging strategy is to treat ageing processes common to the diseasome of ageing itself and thus preempt the development or progression of a range of age-related morbidities.


Author(s):  
Tania Rescigno ◽  
Mario F. Tecce ◽  
Anna Capasso

The increase in the average lifespan and the consequent proportional growth of the elderly segment of society has furthered the interest in studying ageing processes. Ageing may be considered a multifactorial process derived from the interaction between genetic and environmental factors including lifestyle. There is ample evidence in many species that the maximum age attainable (maximum lifespan potential, MLSP) is genetically determined and several mitochondrial DNA polymorphisms are associated with longevity. Many studies have shown that most of the phenotypic characteristics observed in the aging process are the result of the occurrence, with age, of a low grade chronic pro-inflammatory status called "inflammaging", partially under genetic control. The term indicate that aging is accompanied by a low degree of chronic inflammatory, an up-regulation of inflammatory response and that inflammatory changes are common to many age-related diseases. Therefore, the theory of oxidation-inflammation was proposed as the main cause of aging. Accordingly, the chronic oxidative stress, that appears with age, affects all cells and especially those of the regulatory systems, such as the nervous, endocrine, and immune systems and the communication between them. This prevents an adequate homeostasis and, therefore, the preservation of health. It was also proposed that the immune system plays a key role in the aging process, specifically in the rate of aging, since there is a relationship between the redox state and functional capacity of immune cells and longevity of individuals. Moreover, the role of the immune system in senescence could be of universal application. A confirmation of the central role of the immune system in oxi-inflamm-aging is that the administrationintake? of adequate amounts of antioxidants in the diet improves immune function, decreases their oxidative stress, and consequently increases longevity. The promotion of healthy lifestyles is one of the major goals of governments and international agencies all over the world. Human molecular processes are influenced by both physiological pathways and exogenous factors which include, for instance, those originating from diet. Dietary intake has substantive effects on molecular processes of metabolic health. Nutrients can directly regulate physiological changes in human body. In fact, in addition to have an energetic and structural value, nutritional intake provides bioactive molecules which are selectively able to modulate specific metabolic pathways, noticeably affecting cardiovascular and neoplastic diseases development or progress. Numerous bioactive nutrients are being progressively identified and their chemopreventive effects are being described at clinical and molecular mechanism levels. Systematic analyses comprise all “omics” technologies (such as transcriptomics, proteomics and metabolomics) and the goal is to investigate bioactive molecules effects derived from the diet. Nutrigenomic knowledge on physiologic status and disease risk will provide both developments of better diagnostic procedures and of new therapeutic strategies specifically targeted on nutritionally relevant processes. The present review was aimed to understand the molecular mechanisms underlying beneficial effects of bioactive nutrients and nutrigenomics on age-related diseases.


2019 ◽  
Vol 20 (3) ◽  
pp. 589 ◽  
Author(s):  
Maria Olmedillas del Moral ◽  
Nithi Asavapanumas ◽  
Néstor Uzcátegui ◽  
Olga Garaschuk

Brain aging is characterized by a chronic, low-grade inflammatory state, promoting deficits in cognition and the development of age-related neurodegenerative diseases. Malfunction of microglia, the brain-resident immune cells, was suggested to play a critical role in neuroinflammation, but the mechanisms underlying this malfunctional phenotype remain unclear. Specifically, the age-related changes in microglial Ca2+ signaling, known to be linked to its executive functions, are not well understood. Here, using in vivo two-photon imaging, we characterize intracellular Ca2+ signaling and process extension of cortical microglia in young adult (2–4-month-old), middle-aged (9–11-month-old), and old (18–21-month-old) mice. Our data revealed a complex and nonlinear dependency of the properties of intracellular Ca2+ signals on an animal’s age. While the fraction of cells displaying spontaneous Ca2+ transients progressively increased with age, the frequencies and durations of the spontaneous Ca2+ transients followed a bell-shaped relationship, with the most frequent and largest Ca2+ transients seen in middle-aged mice. Moreover, in old mice microglial processes extending toward an ATP source moved faster but in a more disorganized manner, compared to young adult mice. Altogether, these findings identify two distinct phenotypes of aging microglia: a reactive phenotype, abundantly present in middle-aged animals, and a dysfunctional/senescent phenotype ubiquitous in old mice.


2015 ◽  
Vol 114 (7) ◽  
pp. 999-1012 ◽  
Author(s):  
Anne M. Minihane ◽  
Sophie Vinoy ◽  
Wendy R. Russell ◽  
Athanasia Baka ◽  
Helen M. Roche ◽  
...  

The importance of chronic low-grade inflammation in the pathology of numerous age-related chronic conditions is now clear. An unresolved inflammatory response is likely to be involved from the early stages of disease development. The present position paper is the most recent in a series produced by the International Life Sciences Institute's European Branch (ILSI Europe). It is co-authored by the speakers from a 2013 workshop led by the Obesity and Diabetes Task Force entitled ‘Low-grade inflammation, a high-grade challenge: biomarkers and modulation by dietary strategies’. The latest research in the areas of acute and chronic inflammation and cardiometabolic, gut and cognitive health is presented along with the cellular and molecular mechanisms underlying inflammation–health/disease associations. The evidence relating diet composition and early-life nutrition to inflammatory status is reviewed. Human epidemiological and intervention data are thus far heavily reliant on the measurement of inflammatory markers in the circulation, and in particular cytokines in the fasting state, which are recognised as an insensitive and highly variable index of tissue inflammation. Potential novel kinetic and integrated approaches to capture inflammatory status in humans are discussed. Such approaches are likely to provide a more discriminating means of quantifying inflammation–health/disease associations, and the ability of diet to positively modulate inflammation and provide the much needed evidence to develop research portfolios that will inform new product development and associated health claims.


2017 ◽  
Vol 44 (1) ◽  
pp. 357-367 ◽  
Author(s):  
Jiajia Chen ◽  
Wenzhan Wang ◽  
Qiuming Li

Background/Aims: Age-related macular degeneration (AMD) is the primary cause of senior blindness in developed countries. Mechanisms underlying initiation and development of AMD remained known. Methods: We examined the CD4+ T cell compartments and their functions in AMD patients. Results: AMD patients presented significantly higher frequencies of interferon (IFN)-γ-expressing and interleukin (IL)-17-expressing CD4+ T cells than healthy controls. The levels of IFN-γ and IL-17 expression by CD4+ T cells were significantly higher in AMD patients. These IFN-γ-expressing Th1 cells and IL-17-expressing Th17 cells could be selectively enriched by surface CCR3+ and CCR4+CCR6+ expression, respectively. Th1 and Th17 cells from AMD patients promoted the differentiation of monocytes toward M1 macrophages, which were previously associated with retinal damage. Th1 and Th17 cells also increased the level of MHC class I expression in human retinal pigment epithelial (RPE)-1 cells, while Th1 cells increased the frequency of MHC class II-expressing RPE-1 cells. These proinflammatory effects were partly, but not entirely, induced by the secretion of IFN-γ and IL-17. Conclusions: This study demonstrated an enrichment of Th1 cells and Th17 cells in AMD patients. These Th1 and Th17 cells possessed proinflammatory roles in an IFN-γ- and IL-17-dependent fashion, and could potentially serve as therapeutic targets.


2019 ◽  
Vol 20 (20) ◽  
pp. 5020 ◽  
Author(s):  
Roselli ◽  
Schifano ◽  
Guantario ◽  
Zinno ◽  
Uccelletti ◽  
...  

Probiotics exert beneficial effects on host health through different mechanisms of action, such as production of antimicrobial substances, competition with pathogens, enhancement of host mucosal barrier integrity and immunomodulation. In the context of ageing, which is characterized by several physiological alterations leading to a low grade inflammatory status called inflammageing, evidences suggest a potential prolongevity role of probiotics. Unraveling the mechanisms underlying anti-ageing effects requires the use of simple model systems. To this respect, the nematode Caenorhabditis elegans represents a suitable model organism for the study of both host-microbe interactions and for ageing studies, because of conserved signaling pathways and host defense mechanisms involved in the regulation of its lifespan. Therefore, this review analyses the impact of probiotics on C. elegans age-related parameters, with particular emphasis on oxidative stress, immunity, inflammation and protection from pathogen infections. The picture emerging from our analysis highlights that several probiotic strains are able to exert anti-ageing effects in nematodes by acting on common molecular pathways, such as insulin/insulin-like growth factor-1 (IIS) and p38 mitogen-activated protein kinase (p38 MAPK). In this perspective, C. elegans appears to be advantageous for shedding light on key mechanisms involved in host prolongevity in response to probiotics supplementation.


2003 ◽  
Vol 31 (2) ◽  
pp. 457-461 ◽  
Author(s):  
C. Franceschi ◽  
M. Bonafè

For over 10 years we have studied centenarians as a model to address the biological basis of aging and longevity, with particular attention to immunology and genetics. The most important findings can be summarized as follows. (i) Human immunosenescence represents a complex remodelling, whereby clonotypical immunity deteriorates, while ancestral, innate immunity is largely preserved. (ii) Continuous exposure to antigens causes a lifelong, chronic antigenic stress, which is responsible, together with the involution of the thymus, for the accumulation of memory/effector T cells and the exhaustion of naïve T cells. (iii) Aging is characterized by a peculiar chronic inflammatory status that we propose to call ‘inflammaging’, which appears to be under genetic control, is detrimental for longevity and is more evident in men than in women. Inflammaging, i.e. the up-regulation of a variety of anti-stress responses at the cellular and molecular level, is the consequence of the ability of the body to adapt to and counteract the effects of a variety of stressors, which causes the accumulation of molecular and cellular scars. Inflammaging is considered the common and most important driving force of age-related pathologies, such as neurodegeneration, atherosclerosis, diabetes and sarcopenia, among others, all of which share an inflammatory pathogenesis. (iv) Possible strategies to counteract the major effects of immunosenescence and inflammaging, such as the systematic reduction of the lifelong antigenic load, the elimination of chronic infections, thymic rejuvenation and preventative treatment with anti-inflammatory drugs in people with a pro-inflammatory genotype, are envisaged.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Angelica Giuliani ◽  
Francesco Prattichizzo ◽  
Luigina Micolucci ◽  
Antonio Ceriello ◽  
Antonio Domenico Procopio ◽  
...  

A relevant feature of aging is chronic low-grade inflammation, termed inflammaging, a key process promoting the development of all major age-related diseases. Senescent cells can acquire the senescence-associated (SA) secretory phenotype (SASP), characterized by the secretion of proinflammatory factors fuelling inflammaging. Cellular senescence is also accompanied by a deep reshaping of microRNA expression and by the modulation of mitochondria activity, both master regulators of the SASP. Here, we synthesize novel findings regarding the role of mitochondria in the SASP and in the inflammaging process and propose a network linking nuclear-encoded SA-miRNAs to mitochondrial gene regulation and function in aging cells. In this conceptual structure, SA-miRNAs can translocate to mitochondria (SA-mitomiRs) and may affect the energetic, oxidative, and inflammatory status of senescent cells. We discuss the potential role of several of SA-mitomiRs (i.e., let-7b, miR-1, miR-130a-3p, miR-133a, miR-146a-5p, miR-181c-5p, and miR-378-5p), using miR-146a as a proof-of-principle model. Finally, we propose a comprehensive, metabolic, and epigenetic view of the senescence process, in order to amplify the range of possible approaches to target inflammaging, with the ultimate goal of decelerating the aging rate, postponing or blunting the development of age-related diseases.


Sign in / Sign up

Export Citation Format

Share Document