scholarly journals Screening for Copy Number Variations of the 15q13.3 Hotspot in CHRNA7 Gene and Expression in Patients with Migraines

2021 ◽  
Vol 43 (2) ◽  
pp. 1090-1113
Author(s):  
Mehmet Fatih Özaltun ◽  
Sırma Geyik ◽  
Şenay Görücü Yılmaz

Background: a migraine is a neurological disease. Copy number variation (CNV) is a phenomenon in which parts of the genome are repeated. We investigated the effects of the CNV and gene expression at the location 15q13.3 in the Cholinergic Receptor Nicotinic Alpha 7 Subunit (CHRNA7) gene, which we believe to be effective in the migraine clinic. Methods: we evaluated changes in CHRNA7 gene expression levels and CNV of 15q13.3 in patients with migraine (n = 102, with aura, n = 43; without aura, n = 59) according to healthy controls (n = 120) by q-PCR. The data obtained were analyzed against the reference telomerase reverse transcriptase (TERT) gene with the double copy number by standard curve analysis. Copy numbers were graded as a normal copy (2), gain (2>), and loss (<2). Results: we analyzed using the 2−ΔΔCT calculation method. The CHRNA7 gene was significantly downregulated in patients (p < 0.05). The analysis of CNV in the CHRNA7 gene was statistically significant in the patient group, according to healthy controls (p < 0.05). A decreased copy number indicates a dosage loss. However, no significant difference was observed among gain, normal, and loss copy numbers and expression values in patients (p > 0.05). The change in CNV was not associated with the downregulation of the CHRNA7 gene. Conclusion: Downregulation of the CHRNA7 gene may contribute to the formation of migraine by inactivation of the alpha-7 nicotinic receptor (α7nAChR). The association of CNV gains and losses with migraines will lead to better understanding of the molecular mechanisms and pathogenesis, to better define the disease, to be used as a treatment target.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2841-2841 ◽  
Author(s):  
Yosaku Watatani ◽  
Yasunobu Nagata ◽  
Vera Grossmann ◽  
Yusuke Okuno ◽  
Tetsuichi Yoshizato ◽  
...  

Abstract Myelodysplastic syndromes (MDS) and related disorders are a heterogeneous group of chronic myeloid neoplasms with a high propensity to acute myeloid leukemia. A cardinal feature of MDS, as revealed by the recent genetic studies, is a high frequency of mutations and copy number variations (CNVs) affecting epigenetic regulators, such as TET2, IDH1/2, DNMT3A, ASXL1, EZH2, and other genes, underscoring a major role of deregulated epigenetic regulation in MDS pathogenesis. Meanwhile, these mutations/deletions have different impacts on the phenotype and the clinical outcome of MDS, suggesting that it should be important to understand the underlying mechanism for abnormal epigenetic regulation for better classification and management of MDS. SETD2 and ASH1L are structurally related proteins that belong to the histone methyltransferase family of proteins commonly engaged in methylation of histone H3K36. Both genes have been reported to undergo frequent somatic mutations and copy number alterations, and also show abnormal gene expression in a variety of non-hematological cancers. Moreover, germline mutation of SETD2 has been implicated in overgrowth syndromes susceptible to various cancers. However, the role of alterations in these genes has not been examined in hematological malignancies including myelodysplasia. In this study, we interrogated somatic mutations and copy number variations, among a total of 1116 cases with MDS and myelodysplastic/myeloproliferative neoplasms (MDS/MPN), who had been analyzed by target deep sequencing (n=944), and single nucleotide polymorphism-array karyotyping (SNP-A) (n=222). Gene expression was analyzed in MDS cases and healthy controls, using publically available gene expression datasets. SETD2 mutations were found in 6 cases, including 2 with nonsense and 4 with missense mutations, and an additional 10 cases had gene deletions spanning 1.8-176 Mb regions commonly affecting the SETD2 locus in chromosome 3p21.31, where SETD2 represented the most frequently deleted gene within the commonly deleted region. SETD2 deletion significantly correlated with reduced SETD2 expression. Moreover, MDS cases showed a significantly higher SETD2 expression than healthy controls. In total, 16 cases had either mutations or deletions of the SETD2 gene, of which 70% (7 out of 10 cases with detailed diagnostic information) were RAEB-1/2 cases. SETD2 -mutated/deleted cases had frequent mutations in TP53 (n=4), SRSF2 (n=3), and ASXL1 (n=3) and showed a significantly poor prognosis compared to those without mutations/deletions (HR=3.82, 95%CI; 1.42-10.32, P=0.004). ASH1L, on the other hand, was mutated and amplified in 7 and 13 cases, respectively, of which a single case carried both mutation and amplification with the mutated allele being selectively amplified. All the mutations were missense variants, of which 3 were clustered between S1201 and S1209. MDS cases showed significantly higher expression of ASH1L compared to healthy controls, suggesting the role of ASH1L overexpression in MDS development. Frequent mutations in TET2 (n=8) and SF3B1 (n=6) were noted among the 19 cases with ASH1L lesions. RAEB-1/2 cases were less frequent (n=11) compared to SETD2-mutated/deleted cases. ASH1L mutations did not significantly affect overall survival compared to ASH1L-intact cases. Gene Set Expression Analysis (Broad Institute) on suppressed SETD2 and accelerated ASH1L demonstrated 2 distinct expression signatures most likely due to the differentially methylated H3K36. We described recurrent mutations and CNVs affecting two histone methyltransferase genes, which are thought to represent novel driver genes in MDS involved in epigenetic regulations. Given that SETD2 overexpression and reduced ASH1L expression are found in as many as 89% of MDS cases, deregulation of both genes might play a more role than expected from the incidence of mutations and CNVs alone. Although commonly involved in histone H3K36 methylation, both methyltransferases have distinct impacts on the pathogenesis and clinical outcome of MDS in terms of the mode of genetic alterations and their functional consequences: SETD2 was frequently affected by truncating mutations and gene deletions, whereas ASH1L underwent gene amplification without no truncating mutations, suggesting different gene targets for both methyltransferases, which should be further clarified through functional studies. Disclosures Alpermann: MLL Munich Leukemia Laboratory: Employment. Nadarajah:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Shih:Novartis: Research Funding.


Author(s):  
Frank Faltraco ◽  
Denise Palm ◽  
Adriana Uzoni ◽  
Lena Borchert ◽  
Frederick Simon ◽  
...  

AbstractA link between dopamine levels, circadian gene expression, and attention deficit hyperactivity disorder (ADHD) has already been demonstrated. The aim of this study was to investigate the extent of these relationships by measuring circadian gene expression in primary human-derived dermal fibroblast cultures (HDF) after dopamine exposure. We analyzed circadian preference, behavioral circadian and sleep parameters as well as the circadian gene expression in a cohort of healthy controls and participants with ADHD. Circadian preference was evaluated with German Morningness-Eveningness-Questionnaire (D-MEQ) and rhythms of sleep/wake behavior were assessed via actigraphy. After ex vivo exposure to different dopamine concentrations in human dermal fibroblast (HDF) cultures, the rhythmicity of circadian gene expression (Clock, Bmal1, Per1-3, Cry1) was analyzed via qRT-PCR. We found no statistical significant effect in the actigraphy of both groups (healthy controls, ADHD group) for mid-sleep on weekend days, mid-sleep on weekdays, social jetlag, wake after sleep onset, and total number of wake bouts. D-MEQ scores indicated that healthy controls had no evening preference, whereas subjects with ADHD displayed both definitive and moderate evening preferences. Dopamine has no effect on Per3 expression in healthy controls, but produces a significant difference in the ADHD group at ZT24 and ZT28. In the ADHD group, incubation with dopamine, either 1 µM or 10 µM, resulted in an adjustment of Per3 expression to control levels. A similar effect also was found in the expression of Per2. Statistical significant differences in the expression of Per2 (ZT4) in the control group compared to the ADHD group were found, following incubation with dopamine. The present study illustrates that dopamine impacts on circadian function. The results lead to the suggestion that dopamine may improve the sleep quality as well as ADHD symptoms by adjustment of the circadian gene expression, especially for Per2 and Per3.


2021 ◽  
pp. 1-13
Author(s):  
Simei Tu ◽  
Hao Zhang ◽  
Xiaocheng Yang ◽  
Wen Wen ◽  
Kangjing Song ◽  
...  

BACKGROUND: Since the molecular mechanisms of cervical cancer (CC) have not been completely discovered, it is of great significance to identify the hub genes and pathways of this disease to reveal the molecular mechanisms of cervical cancer. OBJECTIVE: The study aimed to identify the biological functions and prognostic value of hub genes in cervical cancer. METHODS: The gene expression data of CC patients were downloaded from the Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database. The core genes were screened out by differential gene expression analysis and weighted gene co-expression network analysis (WGCNA). R software, the STRING online tool and Cytoscape software were used to screen out the hub genes. The GEPIA public database was used to further verify the expression levels of the hub genes in normal tissues and tumour tissues and determine the disease-free survival (DFS) rates of the hub genes. The protein expression of the survival-related hub genes was identified with the Human Protein Atlas (HPA) database. RESULTS: A total of 64 core genes were screened, and 10 genes, including RFC5, POLE3, RAD51, RMI1, PALB2, HDAC1, MCM4, ESR1, FOS and E2F1, were identified as hub genes. Compared with that in normal tissues, RFC5, POLE3, RAD51,RMI1, PALB2, MCM4 and E2F1 were all significantly upregulated in cervical cancer, ESR1 was significantly downregulated in cervical cancer, and high RFC5 expression in CC patients was significantly related to OS. In the DFS analysis, no significant difference was observed in the expression level of RFC5 in cervical cancer patients. Finally, RFC5 protein levels verified by the HPA database were consistently upregulated with mRNA levels in CC samples. CONCLUSIONS: RFC5 may play important roles in the occurrence and prognosis of CC. It could be further explored and validated as a potential predictor and therapeutic target for CC.


2020 ◽  
Vol 48 (1) ◽  
pp. 156-165
Author(s):  
Habtamu Abera Goshu ◽  
Wu Xiaoyun ◽  
Min Chu ◽  
Bao Pengjia ◽  
Ding Xue Zhi ◽  
...  

2019 ◽  
Vol 56 (2) ◽  
pp. 141-145 ◽  
Author(s):  
Maryam GERAVAND ◽  
Parviz FALLAH ◽  
Mojtaba Hedayat YAGHOOBI ◽  
Fatemeh SOLEIMANIFAR ◽  
Malihe FARID ◽  
...  

ABSTRACT BACKGROUND: Colorectal cancer is one of the most commonly diagnosed cancers around the world. One of the factors involved in the development of colorectal cancer is the changes in the normal flora of the intestine. OBJECTIVE: In this study, the mean copy number of Enterococcus faecalis in people with polyps and people with colorectal cancer has been evaluated in comparison with healthy controls. METHODS: In this study, 25 patients with colorectal cancer and 28 patients with intestinal polyps were selected and stool specimens were taken. In addition, 24 healthy individuals were selected as control group. Extraction of bacterial DNA from the stool sample were performed. The molecular methods of PCR for confirmation of standard strain and absolute Real Time PCR (qRT-PCR) method were used to evaluate the number of Enterococcus faecalis in the studied groups. RESULTS: The results of this study indicate that the mean copy number of Enterococcus faecalis in patients with colorectal cancer was 11.2x109 per gram of stool, and in patients with polyps was 9.4x108 per gram of stool. In healthy people, this number was 9x108 per gram of stool. There was a significant difference between the implicit copy numbers in the three groups. (P<0.05). CONCLUSION: Enterococcus faecalis in faecal flora of people with colorectal cancer was significantly higher than those with polyps and healthy people. This could potentially signify the ability of this bacterium to induce colorectal cancer. More studies are needed to prove this theory.


PLoS ONE ◽  
2011 ◽  
Vol 6 (9) ◽  
pp. e24829 ◽  
Author(s):  
Tzu-Pin Lu ◽  
Liang-Chuan Lai ◽  
Mong-Hsun Tsai ◽  
Pei-Chun Chen ◽  
Chung-Ping Hsu ◽  
...  

2019 ◽  
Vol 159 (2) ◽  
pp. 66-73 ◽  
Author(s):  
Takahiro Kinoshita ◽  
Masashi Mikami ◽  
Tadayuki Ayabe ◽  
Keiko Matsubara ◽  
Hiromi Ono ◽  
...  

The genomic region at 15q11.2q13 represents a hotspot for copy-number variations (CNVs) due to nonallelic homologous recombination. Previous studies have suggested that the development of 15q11.2q13 deletions in sperm may be affected by seasonal factors because patients with Prader-Willi syndrome resulting from 15q11.2q13 deletions on paternally derived chromosomes showed autumn-dominant birth seasonality. The present study aimed to determine the frequency of 15q11.2q13 CNVs in sperm of healthy men and clarify the effects of various environmental factors, i.e., age, smoking status, alcohol intake, and season, on the frequency. Thirty volunteers were asked to provide semen samples and clinical information once in each season of a year. The rates of 15q11.2q13 CNVs were examined using 2-color FISH. The results were statistically analyzed using a generalized estimating equation with negative binomial distribution and a log link function. Consequently, informative data were obtained from 83 samples of 26 individuals. The rates of deletions and duplications ranged from 0.04 to 0.48% and from 0.08 to 0.30%, respectively. The rates were not correlated with the age, smoking status, or alcohol intake. Sperm produced in winter showed 1.2 to 1.4-fold high rates for both deletions and duplications as compared with sperm produced in the other seasons; however, there was no significant difference. These results demonstrate high and variable CNV rates at 15q11.2q13 in sperm of healthy men. These CNVs appear to occur independent of the age, smoking status, or alcohol intake, while the effect of season remains inconclusive. Our results merit further validation.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3360-3360
Author(s):  
Erik Wendlandt ◽  
Guido J. Tricot ◽  
Benjamin Darbro ◽  
Fenghuang Zhan

Abstract Background: Multiple myeloma is the second most common blood borne neoplasia, accounting for nearly 10% of all diagnosed hematologic malignancies and has a disproportionately high incidence in elderly populations. Here we explored copy number variations using the high fidelity CytoScan HD arrays to develop a detailed map of copy number variations and identify novel mediators of disease progression. The results from CytoScan HD microarrays provide a detailed view of the entire genome with a resolution up to 25kb. Furthermore, 750,000 single-nucleotide polymorphisms are included and the array provides information about loss of heterozygosity and uniparental disomy. Materials and methods: CytoScan HD arrays were performed on 97 myeloma patient samples to identify cytogenetic regions important to the development and progression of the disease. Gene expression profiles from 351 patients were analyzed to identify genes with a change in gene expression of 1.5 fold or more. Data from CytoScan and gene expression arrays was combined to perform chromosomal positional enrichment analysis to identify cytogenetic driver lesions, or lesions that provide a small, but significant growth and survival advantage to the cell. Furthermore, Kaplan-Meier, log-rank test and Hazard ratio analyses were performed to identify gene within the driver lesions that have a significant impact on survival when dysregulated. Results: The results from the CytoScan HD analysis closely mirrored what has been shown by FISH and SNP arrays, with gains to the odd numbered chromosomes, specifically 3, 5, 7, 9, 11, 15 and 17 as well as losses to chromosomes 1p and 13. Interestingly, we identified gains to a small region within chromosome 8p, contrary to published reports demonstrating a large scale loss of this region. We identified numerous genes within this region that are important for survival and their overexpression resulted in a decreased progression free survival. For example, Cathepsin B (CTSB) is encoded for in chromosome 8p22-p21 with an increased gene expression of at least 1.5 fold over normal controls, among others. Furthermore, Cathepsin B, a cysteine protease, has been linked to cancer of the ileum, suggesting that a similar role may be present within myeloma. We then integrated the 97 copy number profiles results with 351 myeloma gene expression profiles to identify cytogenetic driver lesions in myeloma important for disease development, progression and poor clinical outcome. Chromosomal positional enrichment analysis was employed to identify global myeloma cytogenetic driver aneuploidies as well as develop unique cytogenetic copy number profiles. Our results identified portions of chromosomes 1q, 3, 8p, 9, 13q and 16q, among others, as important driver lesions with changes to these regions providing growth advantages to the cell. Furthermore, our analysis identified five unique cytogenetic classifications based on common cytogenetic lesions. We continue to explore these driver regions to identify lesions important for the oncogenic properties of the larger regions. Conclusion: The data presented here represents a novel and highly sensitive approach for the identification of novel copy number variations and driver lesions. Furthermore, correlations between copy number variations and gene expression arrays identified novel targets important for disease progression and patient survival. CytoScan HD arrays in conjunction with gene expression analysis provided a high resolution image of important cytogenetic lesions in myeloma and identified potentially important therapeutic targets for drug development. Further work is needed to validate our findings and determine the therapeutic efficacy of the identified targets. Disclosures No relevant conflicts of interest to declare.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 9510-9510
Author(s):  
Edoardo Missiaglia ◽  
Dan Williamson ◽  
Julia C. Chisholm ◽  
Pratyaksha Wirapati ◽  
Gaëlle Pierron ◽  
...  

9510 Background: Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma and comprises two major histological subtypes: alveolar and embryonal. The majority of alveolar tumors harbor PAX/FOXO1 fusion genes. Current patient risk stratification, unlike other pediatric embryonal tumors, does not utilize any molecular data. Therefore, we aimed to improve the risk stratification of RMS patients through the use of molecular biological data. Methods: Two independent data sets of gene expression profiling for 124 and 101 RMS were used to derive prognostic gene signatures by meta-analysis. Genomic array CGH data for 109 RMS was also evaluated to develop a prognostic marker based on copy number variations (CNVs). The performance and usefulness of these derived metagenes and CNVs as well as a previously published metagene signature were evaluated using rigorous leave-one-out cross-validation analyses. Results: The new prognostic gene expression signature, MG15, and one previously published (MG34) (Davicioni. JCO. 2010) performed well with reproducible and significant effects (HR 3.2 [1.7-5.9] p < 0.001 and HR 2.5 [1.5-4.3] p < 0.001, respectively). However, they did not significantly add new prognostic information over the fusion gene status (PAX3/FOXO1, PAX7/FOXO1 and Negative). Similarly, a prognostic CNV marker, although showing HR 2.9 [1.5-5.6] p < 0.01, was also not improving models with fusion gene status. Within fusion negative RMS, the analysis identified prognostic markers based on either gene expression or CNVs and showed significant association with patients outcome (HR 6.3 [1.5-26.3] p ≤ 0.016 and HR 11.2 [2.5-50.7] p < 0.010, respectively). Moreover, these were able to identify distinct risk groups within the COG (Children's Oncology Group) risk categories, which is currently used to guide treatment. Conclusions: Molecular signatures derived using all RMS effectively stratify patients by their risk, but most of their prognostic information is contained in the PAX/FOXO1 fusion gene status which is simpler to assay. New markers developed within the fusion negative population seem improving current RMS risk classifier and should be tested in follow-up studies.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Tomás Eduardo Ceremuga ◽  
Stephanie Martinson ◽  
Jason Washington ◽  
Robert Revels ◽  
Jessica Wojcicki ◽  
...  

Posttraumatic stress disorder (PTSD) is characterized by the occurrence of a traumatic event that is beyond the normal range of human experience. The future of PTSD treatment may specifically target the molecular mechanisms of PTSD. In the US, approximately 20% of adults report taking herbal products to treat medical illnesses. L-theanine is the amino acid in green tea primarily responsible for relaxation effects. No studies have evaluated the potential therapeutic properties of herbal medications on gene expression in PTSD. We evaluated gene expression in PTSD-induced changes in the amygdala and hippocampus of Sprague-Dawley rats. The rats were assigned to PTSD-stressed and nonstressed groups that received either saline, midazolam, L-theanine, or L-theanine + midazolam. Amygdala and hippocampus tissue samples were analyzed for changes in gene expression. One-way ANOVA was used to detect significant difference between groups in the amygdala and hippocampus. Of 88 genes examined, 17 had a large effect size greater than 0.138. Of these, 3 genes in the hippocampus and 5 genes in the amygdala were considered significant (P<0.05) between the groups. RT-PCR analysis revealed significant changes between groups in several genes implicated in a variety of disorders ranging from PTSD, anxiety, mood disorders, and substance dependence.


Sign in / Sign up

Export Citation Format

Share Document