scholarly journals Antimicrobial Properties of Samarium Doped Hydroxyapatite Suspensions and Coatings

Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1124
Author(s):  
Simona Liliana Iconaru ◽  
Andreea Groza ◽  
Sofia Gaiaschi ◽  
Krzysztof Rokosz ◽  
Steinar Raaen ◽  
...  

Post-implant infections are a major health problem, and it is well-known that treating them with conventional drugs is accompanied by many disadvantages. The development of new biomaterials with enhanced antimicrobial properties are of major interest for the scientific world. The aim of this study was to synthesize and characterize hydroxyapatite doped with Samarium (Ca10−xSmx(PO4)6(OH)2, xSm = 0.05, 5Sm-HAp) suspensions, pellets and coatings. The 5Sm-HAp coatings on Si substrates were obtained by rf magnetron sputtering technique. The different techniques such as ultrasound measurements, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Glow Discharge Optical Emission Spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were used to examine the obtained coatings. The results showed that the doped Sm ions entered the structure of hydroxyapatite successfully and Sm ions was uniformly doped onto the surface of the support. The depth profile curves of Ca, P, O, H, Ce and Si elements exhibit their presence from a surface to substrate interface as function of sputtering time. XPS analysis indicated as calcium-phosphate structures enriched in Sm3+ ions. Furthermore, the antimicrobial properties of the 5Sm-HAp suspensions, targets and coatings were assessed against Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923 and Candida albicans ATCC 10231. The results of the antimicrobial assays highlighted that that the samples presented a strong antimicrobial activity against the tested microbial strains. The results showed that the coatings after 48 h of incubation inhibited the growth of all tested microbial strains under the value of 0.6 Log CFU/mL. This study shows that the 5Sm-HAp samples are good candidates for the development of new antimicrobial agents.

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1561
Author(s):  
Carmen Steluta Ciobanu ◽  
Simona Liliana Iconaru ◽  
Daniela Predoi ◽  
Roxana-Doina Trușcă ◽  
Alina Mihaela Prodan ◽  
...  

In this study, we develop chitosan–hydroxyapatite (CS–HAp) composite layers that were deposited on Si substrates in radio frequency (RF) magnetron sputtering discharge in argon gas. The composition and structure of CS–HAp composite layers were investigated by analytical techniques, such as Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), metallographic microscopy (MM), and atomic force microscopy (AFM). On the other hand, in the present study the second order derivative of FT-IR–ATR spectra, for compositional analyses of CS–HAp, were used. The SEM, MM, and AFM data have shown the formation of CS–HAp composite layers. The surface of CS–HAp composite layers showed uniform growth (at an Ar gas working pressure of p = 2 × 10−3 mbar). The surface of the CS–HAp composites coatings became more nanostructured, becoming granular as the gas pressure increased from 5 × 10−3 to 1.2 × 10−2 mbar. However, our studies revealed that the surface morphology of the CS–HAp composite layers varies with the Ar gas working pressure. At the same time, optical properties are slightly influenced by Ar pressure. Their unique physicochemical properties make them suitable for various applications in the biomedical field, if we consider the already proven antimicrobial properties of chitosan. The antifungal properties and the capacity of the CS–HAp composite layers to inhibit the development of fungal biofilms were also demonstrated using the Candida albicans ATCC 10231 (C. albicans) fungal strain.


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


2015 ◽  
Vol 1117 ◽  
pp. 139-142 ◽  
Author(s):  
Marius Dobromir ◽  
Radu Paul Apetrei ◽  
A.V. Rogachev ◽  
Dmitry L. Kovalenko ◽  
Dumitru Luca

Amorphous Nb-doped TiO2 thin films were deposited on (100) Si and glass substrates at room temperature by RF magnetron sputtering and a mosaic-type Nb2O5-TiO2 sputtering target. To adjust the amount of the niobium dopant in the film samples, appropriate numbers of Nb2O5 pellets were placed on the circular area of the magnetron target with intensive sputtering. By adjusting the discharge conditions and the number of niobium oxide pellets, films with dopant content varying between 0 and 16.2 at.% were prepared, as demonstrated by X-ray photoelectron spectroscopy data. The X-ray diffraction patterns of the as-deposited samples showed the lack of crystalline ordering in the samples. Surfaces roughness and energy band gap values increase with dopant concentration, as showed by atomic force microscopy and UV-Vis spectroscopy measurements.


2012 ◽  
Vol 545 ◽  
pp. 290-293
Author(s):  
Maryam Amirhoseiny ◽  
Hassan Zainuriah ◽  
Ng Shashiong ◽  
Mohd Anas Ahmad

We have studied the effects of deposition conditions on the crystal structure of InN films deposited on Si substrate. InN thin films have been deposited on Si(100) substrates by reactive radio frequency (RF) magnetron sputtering method with pure In target at room temperature. The nitrogen gas pressure, applied RF power and the distance between target and substrate were 2×10-2 Torr, 60 W and 8 cm, respectively. The effects of the Ar–N2 sputtering gas mixture on the structural properties of the films were investigated by using scanning electron microscope, energy-dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction techniques.


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1616
Author(s):  
Monserrat Escamilla-García ◽  
Raquel A. Ríos-Romo ◽  
Armando Melgarejo-Mancilla ◽  
Mayra Díaz-Ramírez ◽  
Hilda M. Hernández-Hernández ◽  
...  

Food packaging faces the negative impact of synthetic materials on the environment, and edible coatings offer one alternative from filmogenic suspensions (FS). In this work, an active edible FS based on chitosan (C) and quinoa protein (QP) cross-linked with transglutaminase was produced. Thyme (T) and rosemary (R) essential oils (EOs) were incorporated as antimicrobial agents. Particle size, Z potential, and rheological parameters were evaluated. The antimicrobial activity against Micrococcus luteus (NCIB 8166) and Salmonella sp. (Lignieres 1900) was monitored using atomic force microscopy and image analysis. Results indicate that EOs incorporation into C:QP suspensions did not affect the Z potential, ranging from −46.69 ± 3.19 mV to −46.21 ± 3.83 mV. However, the polydispersity index increased from 0.51 ± 0.07 to 0.80 ± 0.04 in suspensions with EO. The minimum inhibitory concentration of active suspensions against Salmonella sp. was 0.5% (v/v) for thyme and 1% (v/v) for rosemary. Entropy and fractal dimension of the images were used to confirm the antimicrobial effect of EOs, which modified the surface roughness.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Angela De Bonis ◽  
Agostino Galasso ◽  
Antonio Santagata ◽  
Roberto Teghil

A MgB2target has been ablated by Nd:glass laser with a pulse duration of 250 fs. The plasma produced by the laser-target interaction, showing two temporal separated emissions, has been characterized by time and space resolved optical emission spectroscopy and ICCD fast imaging. The films, deposited on silicon substrates and formed by the coalescence of particles with nanometric size, have been analyzed by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. The first steps of the films growth have been studied by Transmission Electron Microscopy. The films deposition has been studied by varying the substrate temperature from 25 to 500°C and the best results have been obtained at room temperature.


2011 ◽  
Vol 383-390 ◽  
pp. 3298-3304 ◽  
Author(s):  
Eliška Mikmeková ◽  
Michal Urbánek ◽  
Tomáš Fořt ◽  
Rosa Di Mundo ◽  
Ondřej Caha

The effect of hydrogen on the properties of amorphous carbon nitride films deposited onto Si substrates by magnetron sputtering device has been studied. The influence of hydrogen to roughness, porous character of films, composition and residual stress was investigated by atomic force microscopy, thermal desorption mass spectroscopy, X-ray photoelectron spectroscopy, scanning low energy electron microscopy and by goniometer equipped with Cu X-ray tube. The adding of hydrogen to nitrogen discharge a causes decrease in the high value of compressive stress (elimination of delamination of the films, increasing of nitrogen content in the bulk). On the other hand hydrogen increases roughness and porosity.


2020 ◽  
Vol 853 ◽  
pp. 235-242
Author(s):  
Zhi Li ◽  
Chun Yu Ma

In the present work, Os and N co-doped TiO2 films were first prepared using a reactive RF magnetron sputtering of Ti–Os metallic target. The effect of Os concentration varying from 0 to 3.0at.% on structure as well as morphology and subsequent changes in optical and photocatalytic properties were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), optical absorption spectra and photoluminescence (PL) spectroscopy. XRD and SEM results show that the co-doping of Os and N favors the crystal growth of TiO2 and leads to a low anatase thermal stability relative to N monodoping. The band gap of the N/Os co-doped films is reduced from 3.42 eV to 3.22 eV compared with the N-TiO2 film. PL investigation further exhibits the effects of Os doping on the electronic structures and defects in N-TiO2.The photocatalytic activities of the films were evaluated by the degradation of methylene blue in aqueous solution under UV light. It was found that the photocatalytic activity increases with increasing Os content first, and then decreases after the optimal Os content. Therefore, the photocatalytic activity of Os/N co-modified TiO2 photocatalysts can be adjusted by the Os content.


2012 ◽  
Vol 252 ◽  
pp. 202-206
Author(s):  
Xiao Hua Sun ◽  
Zhi Meng Luo ◽  
Shuang Hou ◽  
Cai Hua Huang ◽  
Jun Zou

BZNT (Bi1.5Zn0.5Nb0.5Ti1.5O7) thin films were prepared on Pt/Ti/SiO2/Si substrates by radio frequency (RF) magnetron sputtering in different O2/Ar ranging from 4:16 to 7:13. The structure and surface morphology of BZNT thin films were investigated by x-ray diffraction (XRD) and atom force microscopy (AFM). The analysis of component in BZNT films were carried out by x-ray photoelectron spectroscopy (XPS). The dielectric measurements were conducted on metal-insulator-metal capacitors at the frequency from 100 Hz to 1M Hz. It’s found that the O2/Ar ratios significantly influence the elements content in BZNT thin films and the morphology and dielectric properties of BZNT thin films. At 1M Hz, the dielectric constant of BZNT thin films deposited at O2/Ar ranging from 4:16 to 7:13 is 212, 187, 171, 196, respectively. The BZNT thin film prepared at O2/Ar = 6:14 shows the highest figure of merit for its very low dielectric loss of 0.0024.


2002 ◽  
Vol 16 (28n29) ◽  
pp. 4339-4342 ◽  
Author(s):  
JINXIANG DENG ◽  
GUANGHUA CHEN ◽  
XUEMEI SONG

Cubic boron nitride (c-BN) thin films have been deposited on Si substrates by radio frequency sputter. Sputtering target was hot pressed hexagonal boron nitride of 4N purity. Sputtering gas was the mixture of nitrogen and argon. During depositing c-BN thin films, substrates were biased by dc voltage negatively with respect to ground. By optimizing the deposition conditions, the boron nitride (BN) films containing a large amount of cubic phase were obtained. The samples were characterized with Fourier transformation infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). According to FTIR, the cubic phase content of c-BN thin films was evaluated to be 92. The B/N ratio was estimated to be approximately 1 from XPS. The AFM shows that the c-BN thin films delaminated from Si substrates obviously.


Sign in / Sign up

Export Citation Format

Share Document