scholarly journals Plasma Enhanced Fluorine-Free Superhydrophobic Polyester (PET) Fabric with Ultra-Robust Antibacterial and Antibacterial Adhesion Properties

Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Yuling Lai ◽  
Ying Guo ◽  
Liyun Xu ◽  
Xijiang Chang ◽  
Xingqun Zhang ◽  
...  

Superhydrophobic antibacterial fabric possesses properties of antibacterial and antibacterial adhesion and shows huge demand in the field of medical textiles. However, current technologies are unable to fully address this. Hence, a simple method is highly desirable. Herein, the pristine polyester (PET) fabric is immersed into the solution containing ZnO nanoparticle and polydimethylsiloxane (PDMS), and the fiber surfaces are uniformly covered by a ZnO-PDMS layer after being treated by low pressure Ar plasma. The weight gain rate of the treated fabric is 3.5%, which is basically unchanged, and the air permeability, moisture permeability, and tensile properties of the fabric are basically not affected. It is found that the water contact angle (WCA) of the fabric is over 162.7°and sliding angle (SA) is less than 10°. The stable binding of PDMS and PET fibers induces a robust superhydrophobicity; even after 300 washing cycles and 600 friction cycles, it still remains superhydrophobic. The antibacterial rates of Escherichia coli and Staphylococcus aureus before washing were 99.89% and 99.85%, respectively, and after 100 cycles of washing, the antibacterial rates decreased to 99.36% and 99.17%, respectively. Therefore, it shows a good development prospect in the application of protecting clothing or textiles that require good antibacterial properties (such as bed sheets, duvet covers, etc.).

2021 ◽  
Vol 16 ◽  
pp. 155892502110660
Author(s):  
Cuihong Sheng ◽  
Limeng Yang ◽  
Hui Zhang ◽  
Pengfei Zhang ◽  
Guodong Shen

Superhydrophobic antibacterial cotton fabric can be widely applied in outdoor clothing, hospital bedding, and other fields. However, the existing manufacturing methods are difficult or complicated. Herein, a facile and straightforward fabrication strategy is proposed via a one-step hydrothermal method to construct micro-nanometer hierarchical structure with low surface energy on fabric. In an appropriate amount, 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PFOTES) and tetrabutyl titanate (TBT) were mixed in a hydrothermal reactor to generate titanium dioxide. Meanwhile, the PFOTES agent was hydrolyzed and condensed, bonded with titanium dioxide, and finally grafted onto the fiber together. Morphology and elements results demonstrated that the fabric surface was covered by the TiO2 nanoparticles with superhydrophobic coating. The chemical bonds of Si-O-Ti, Ti-O-C, and Ti-O-Ti revealed the structural relationship between TiO2 with PFOTES and cotton fibers. The water contact angle of the fabric obtained can reach to 168°. The fluorinated-TiO2 cotton fabric showed high antibacterial properties in visible light against E. coli and S. aureus. This simple method of preparing superhydrophobic and antibacterial fabric exhibited great potential in the field of functional textiles such as outdoor garments and hospital-related applications.


2017 ◽  
Vol 89 (4) ◽  
pp. 473-486 ◽  
Author(s):  
Nena Velkova ◽  
Lidija Fras Zemljic ◽  
Bodo Saake ◽  
Simona Strnad

The main aim of this research was development of thin functional xylan layers on polyethylene terephthalate (PET) fabric surfaces. Xylans, derived from hard wood and oat spelt, were modified chemically in order to introduce cationic functional groups. Cationization of xylans was proved by elemental analysis, total bound nitrogen determination, and Raman techniques, as well as by polyelectrolyte titrations. The antimicrobial activity of xylans was investigated by the determination of Minimal Inhibitory Concentration against bacteria S. aureus and E. coli, and fungi C. albicans. Xylan solutions were then applied onto PET fabric using the spray coating technique. Charging behavior of the treated PET fabric samples was evaluated by potentiometric titration supported by X-ray electron spectroscopy. Hydrophilicity was examined by the water contact angle determination. The morphology of coated fabrics was analyzed using Scanning Electron Microscopy. The results of microbial testing showed that PET fabrics functionalized by cationic xylans act antimicrobially against S. aureus and E. coli. The presented work suggests that cationized xylans, originally derived from hard wood and/or oat spelt, could be applied successfully as a coating material for PET fabrics in order to introduce hydrophilicity and antimicrobial properties.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1263
Author(s):  
Liyun Xu ◽  
Yu Zhang ◽  
Ying Guo ◽  
Ruiyun Zhang ◽  
Jianjun Shi ◽  
...  

In order to obtain stable superhydrophobicity, suitable hydrophobic treatment agents should be selected according to different material properties. In this paper, cotton and poly(ethylene terephthalate) (PET) fabrics were respectively coated with dodecyl methacrylate (LMA) via argon combined capacitively coupled plasma (CCP), and the surface hydrophobicity and durability of the treated cotton and polyester fabrics are also discussed. An interesting phenomenon happened, whereby the LMA-coated cotton fabric (Cotton-g-LMA) had better water repelling and mechanical durability properties than LMA-coated PET fabric (PET-g-LMA), and LMA-coated hydroxyl-grafted PET fabrics (PET fabrics were successively coated with polyethylene glycol (PEG) and LMA, PET-g-PEG & LMA) had a similar performance to cotton fabrics. The water contact angles of Cotton-g-LMA, PET-g-LMA and PET-g-PEG & LMA were 156°, 153° and 155°, respectively, and after 45 washing cycles or 1000 rubbing cycles, the corresponding water contact angles decreased to 145°, 88°, 134° and 146°, 127° and 143°, respectively. Additionally, thermoplastic polyurethane (TPU) and polyamides-6 (PA6) fabrics all exhibited the same properties as the PET fabric. Therefore, the grafting of hydroxyl can improve the hydrophobic effect of LMA coating and the binding property between LMA and fabrics effectively, without changing the wearing comfort.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5794-5805
Author(s):  
Yating Wang ◽  
Xiaochun Chen ◽  
Yaqi Liang ◽  
Chenghua Yu

Despite previous efforts, the fabrication of superhydrophobic substrate via an environment friendly and easy approach remains a great challenge. In this study, a low cost, simple, and green procedure was developed to prepare a superhydrophobic paper surface that is acceptable for the papermaking industry. First, a wax mixture (beeswax & carnauba wax) was emulsified and coated on the filter paper surface. Then, the coated paper was annealed at different temperatures. The further heat-treatment-rendered wax-coated paper hydrophobic or superhydrophobic because submicrometer or micrometer wax structures were present on the paper surface. The water contact angle of the annealed filter paper sample reached 151.5° at 60 °C, and the sliding angle was under 10°. Further, the relationship between surface composition and the hydrophobic properties of the coated paper samples was discussed. The obtained paper samples showed great potential in water/oil separation, as they had an efficiency over 99%. This work proposed a new simple and mild approach to fabricate superhydrophobic filter papers and explored the hydrophobicity and water/oil separation properties.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nazanin Mansouri Shirazi ◽  
Niloofar Eslahi ◽  
Adeleh Gholipour-Kanani

Keratin protein has been applied for biomedical applications due to its biocompatibility, biodegradability, mechanical resistance, and bioavailability. Tragacanth gum (TG) as a polysaccharide-based biopolymer has wound healing and antimicrobial properties. In this study, keratin was extracted from protein-based chicken feather by using reduction hydrolysis (sodium sulfide), and nanogels of keratin and TG composites at different ratios were produced by using the chemical cross-linking method. Then, cinnamon (5 and 10%) as an antibacterial herbal extract was added to the nanogels and coated on cotton fabric. The morphology and size of the composite nanogels, chemical structure, biological, and antibacterial properties were evaluated. According to DLS results, TGK2:1 (ratio of TG to keratin = 2:1) had the minimum size (80 nm) and PDI (0.1), and therefore, this sample was chosen as the optimum one. FESEM and TEM images showed the semi-spherical shape of the produced nanogels. FTIR spectra revealed the possible hydrogen bonding between the components, and the formation of disulfide bonds after the addition of hydrogen peroxide was confirmed by XPS. After loading cinnamon into the nanogels, an increase in size was observed from 80 nm for free-nanogel to 85 and 105 nm for 5 and 10% extract-loaded nanogels, respectively. Besides, more cinnamon was released from the treated fabrics by increasing time and cinnamon concentration. The antibacterial test exhibited good antibacterial properties against both Gram-positive and Gram-negative bacteria. Finally, MTT assay approved the biocompatibility of the produced nanogels for potential use in medical textiles.


2012 ◽  
Vol 706-709 ◽  
pp. 2874-2879 ◽  
Author(s):  
R. Jafari ◽  
Masoud Farzaneh

Superhydrophobic surfaces were prepared using a very simple and low-cost method by spray coating. A high static water contact angle of about 154° was obtained by deposition of stearic acid on an aluminium alloy. However, this coating demonstrated a high contact angle hysteresis (~ 30º). On the other hand, superhydrophobic surfaces with a static contact angle of about 162º and 158º, and a low contact angle hysteresis of about 3º and 5º were respectively obtained by incorporating nanoparticles of SiO2and CaCO3in stearic acid. The excellent resulting hydrophobicity is attributed to the synergistic effects of micro/nanoroughness and low surface energy. A study of the wettability of these surfaces at temperatures ranging from 20 to-10 °C showed that the superhydrophobic surface becomes rather hydrophobic at supercooled temperatures.


Author(s):  
R. Asmatulu ◽  
K. S. Erukala ◽  
M. M. Rahman

Field of composites is rapidly growing in many industries such as aviation, energy and automotive industries. Composites are known to have a high strength to low weight ratio. Significant improvement in the performance of coatings used in the protection of military and civil aircraft has been achieved the last thirty years. Composite coatings are exposed to many environmental conditions, which can significantly affect their properties. In this research, UV light treatment on the surface of composite was introduced to examine its effects on the adhesion properties between the coating and substrate. A cross-cut test was conducted on the composite panels to assess the adhesion of paint to the substrate after the treatments. Coating performance analyses were also carried out using a Fourier transform infrared spectrometer, water contact angle, and optical microscopic images. The first set of panels was treated with UV radiation for 0, 2, 4 and, 8 days, and the surface wettability was also assessed using the contact angle test. Two coats of paints, including a primer and top coat, were used, and the panels were exposed to UV radiation and immersed in water for 500 hrs and 1000 hrs. It was found that untreated panels showed a much higher contact angle of 106°, whereas the contact angle of panels treated with UV radiation was reduced to 47°. The cross-cut tests showed considerable flaking of the coating along the edges and squares of panels that were not treated, and very small flakes along the edges and parts of the grid square on panels that were UV treated, thus confirming the enhancement of coating adhesion between composite and coating surfaces by UV treatments.


2018 ◽  
Vol 5 (7) ◽  
pp. 180598 ◽  
Author(s):  
Xiaoming Wang ◽  
Xingeng Li ◽  
Qingquan Lei ◽  
Yaping Wu ◽  
Wenjing Li

Composite superhydrophobic coating built with film former and filler is attracting much attention for its facile and convenient fabrication, but significant limitations and disadvantages still remain. In this paper, a composite superhydrophobic coating is introduced which can be cured at room temperature and made by dispersing modified silica nanoparticles with 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane in fluorosilicone resin. Silica content and dispersion time showed obvious influences on the morphology and topography of composite coating by reuniting dispersed nanoparticles to form peaks on the surface. Excessively large distances between these peaks would decrease water contact angle value. Increasing slope of peaks, appropriate distance between peaks and decreasing diameter size of peaks would diminish sliding angle value. Formation mechanism of the composite coating based on fluorosilicone resin and modified nanoparticles was explained using interpenetrating polymer model.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 692
Author(s):  
Cecilia Martini ◽  
Francesca Longo ◽  
Raffaella Castagnola ◽  
Luca Marigo ◽  
Nicola Maria Grande ◽  
...  

The aim of this study was to evaluate the antibacterial properties of graphene oxide (GO) against Enterococcus faecalis in vitro conditions and when used to coat dentin surface to prevent E. faecalis adhesion. The ATCC strain of E. faecalis 29212 has been used to perform a viability test. The pellet was suspended in ultrapure water, NaCl, PBS buffer, CaCl2 and MgCl2, Luria−Bertani broth solutions. The viability was evaluated by the colony forming unit counting method. Atomic force microscopy images and the measure of surface zeta potential variation were analyzed. Dentin discs were covered with a film of GO (n = 15) or were not treated (n = 15). Bacterial suspension was added to each sample of dentine discs and microbial counts were calculated. Statistically significant differences between two groups were assessed by a two-tailed unpaired t-test. Bacteria cell morphology was investigated with scanning electron microscopy. The highest growth inhibition was obtained in ddH2O and CaCl2 solution while, in PBS and NaCl, GO had poor antibacterial efficacy with a growth enhancing effect in the latter. GO on dentin discs demonstrated high antibacterial activity. GO film has demonstrated acceptable adhesion properties to root dentin and a role in the inhibition of bacterial film proliferation and biofilm formation.


2019 ◽  
Vol 33 (14n15) ◽  
pp. 1940019 ◽  
Author(s):  
Chang-Mou Wu ◽  
Ri-Ichi Murakami ◽  
Syuan-Guang Lai ◽  
Po-Chun Lin ◽  
Pankaj Koinkar ◽  
...  

In this study, surface modifications and manufacturing processes for polyethylene terephthalate (PET)/polypropylene (PP) composites were developed. When non-polar PP resin is combined with polar polyester fiber, its compatibility and wettability are the key technologies. Maleic anhydride-grafted PP (MAPP) was blended with PP to improve the polarity of the PP resin and react with PET fibers. In addition, a primer was applied to the PET fabric to improve the bonding and reactivity of PET fiber and MAPP. PET/PP composites that imitated the texture and appearance of carbon fabric were prepared by thin film stacking method. The effect of MAPP and primer on interfacial bonding was evaluated by single-fiber pullout test. The mechanical properties of the PET/PP composites such as impact, and open-hole tensile strength (OHT), were studied.


Sign in / Sign up

Export Citation Format

Share Document